
circuits Documentation
Release 2.0.1

James Mills

March 03, 2013

CONTENTS

i

ii

circuits Documentation, Release 2.0.1

Release 2.0.1

Date March 03, 2013

CONTENTS 1

circuits Documentation, Release 2.0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Getting Started

1.1.1 Quick Start Guide

The easiest way to download and install circuits is to use the pip command:

$ pip install circuits

Now that you have successfully downloaded and installed circuits, let’s test that circuits is properly installed and
working.

First, let’s check the installed version:

>>> import circuits
>>> print circuits.__version__
1.3

Try some of the examples in the examples/ directory shipped with the distribution or check out some Applications
using circuits

Have fun :)

1.1.2 Downloading

Latest Stable Release

The latest stable releases can be downloaded from the Downloads page.

Latest Development Source Code

We use Mercurial for source control and code sharing.

The latest development branch can be cloned using the following command:

$ hg clone http://bitbucket.org/prologic/circuits/

For further instructions on how to use Mercurial, please refer to the Mercurial Book.

3

http://pypi.python.org/pypi/pip
http://bitbucket.org/prologic/circuits/downloads/
http://mercurial.selenic.com/
http://mercurial.selenic.com/wiki/MercurialBook

circuits Documentation, Release 2.0.1

1.1.3 Installing

If you have not installed circuits via the the setuptools easy_install tool, then the following installation instructions
will apply to you. Either you’ve downloaded a source package or cloned the development repository.

Installing from a Source Package

$ python setup.py install

For other installation options see:

$ python setup.py --help install

Installing from the Development Repository

If you have cloned the development repository, it is recommended that you use setuptools and use the following
command:

$ python setup.py build develop

NB: The “build” command is required when installing from the development repository (build creates the version file
which is built dynamically).

This will allow you to regularly update your copy of the circuits development repository by simply performing the
following in the circuits working directory:

$ hg pull -u

NB: You do not need to reinstall if you have installed with setuptools via the circuits repository and used setuptools to
install in “develop” mode.

1.1.4 Requirements and Dependencies

• circuits has no required dependencies beyond the Python Standard Library.

• Python: >= 2.6

Other Optional Dependencies

These dependencies are not strictly required and only add additional features such as the option for a routes dispatcher
for circuits.web and rendering of component graphs for your application.

• pydot – For rendering component graphs of an application.

1.2 Tutorial

1.2.1 Overview

Welcome to the circuits tutorial. This 5-minute tutorial will guide you through the basic concepts of circuits. The
goal is to introduce new concepts incrementally with walk-through examples that you can try out! By the time you’ve
finished, you should have a good basic understanding of circuits, how it feels and where to go from there.

4 Chapter 1. Contents

http://pypi.python.org/pypi/setuptools
http://docs.python.org/library/
http://pypi.python.org/pypi/pydot/

circuits Documentation, Release 2.0.1

1.2.2 The Component

First up, let’s show how you can use the Component and run it in a very simple application.

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5 Component().run()

Download 001.py

Okay so that’s pretty boring as it doesn’t do very much! But that’s okay... Read on!

Let’s try to create our own custom Component called MyComponent.

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5 class MyComponent(Component):
6 """My Component"""
7

8 MyComponent().run()

Download 002.py

Okay, so this still isn’t very useful! But at least we can create components with the behavior we want.

Let’s move on to something more interesting...

1.2.3 Event Handlers

Let’s now extend our little example to say “Hello World!” when its started.

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5 class MyComponent(Component):
6

7 def started(self, *args):
8 print("Hello World!")
9

10 MyComponent().run()

Download 003.py

Here we’ve created a simple Event Handler that listens for events on the “started” channel. Methods defined in a
Component are converted into Event Handlers.

Running this we get:

Hello World!

Alright! We have something slightly more useful! Whoohoo it says hello!

Note: Press ^C (CTRL + C) to exit.

1.2. Tutorial 5

circuits Documentation, Release 2.0.1

1.2.4 Registering Components

So now that we’ve learned how to use a Component, create a custom Component and create simple Event Handlers,
let’s try something a bit more complex by creating a complex component made up of two simpler ones.

Let’s create two components:

• Bob

• Fred

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5 class Bob(Component):
6

7 def started(self, *args):
8 print("Hello I’m Bob!")
9

10 class Fred(Component):
11

12 def started(self, *args):
13 print("Hello I’m Fred!")
14

15 (Bob() + Fred()).run()

Download 004.py

Notice the way we register the two components Bob and Fred together ? Don’t worry if this doesn’t make sense right
now. Think of it as putting two components together and plugging them into a circuits board.

Running this example produces the following result:

Hello I’m Bob!
Hello I’m Fred!

Cool! We have two components that each do something and print a simple message on the screen!

1.2.5 Complex Components

Now, what if we wanted to create a Complex Component ? Let’s say we wanted to create a new Component made up
of two other smaller components ?

We can do this by simply registering components to a Complex Component during initialization.

1 #!/usr/bin/env python
2

3 from circuits import Component
4 from circuits.tools import graph
5

6 class Pound(Component):
7

8 def __init__(self):
9 super(Pound, self).__init__()

10

11 self.bob = Bob().register(self)
12 self.fred = Fred().register(self)
13

14 def started(self, *args):

6 Chapter 1. Contents

circuits Documentation, Release 2.0.1

15 print(graph(self.root))
16

17 class Bob(Component):
18

19 def started(self, *args):
20 print("Hello I’m Bob!")
21

22 class Fred(Component):
23

24 def started(self, *args):
25 print("Hello I’m Fred!")
26

27 Pound().run()

Download 005.py

So now Pound is a Component that consists of two other components registered to it: Bob and Fred

The output of this is identical to the previous:

* <Pound/* 3391:MainThread (queued=0, channels=1, handlers=3) [R]>

* <Bob/* 3391:MainThread (queued=0, channels=1, handlers=1) [S]>

* <Fred/* 3391:MainThread (queued=0, channels=1, handlers=1) [S]>
Hello I’m Bob!
Hello I’m Fred!

The only difference is that Bob and Fred are now part of a more Complex Component called Pound. This can be
illustrated by the following diagram:

Pound-1344

Bob-9b0c Fred-e98a

Note: The extra lines in the above output are an ASCII representation of the above graph (produced by pydot +
graphviz).

Cool :-)

1.2.6 Component Inheritence

Since circuits is a framework written for the Python Programming Language it naturally inherits properties of Object
Orientated Programming (OOP) – such as inheritence.

1.2. Tutorial 7

http://www.python.org/

circuits Documentation, Release 2.0.1

So let’s take our Bob and Fred components and create a Base Component called Dog and modify our two dogs (Bob
and Fred) to subclass this.

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5

6 class Woof(Event):
7 """Woof Event"""
8

9

10 class Pound(Component):
11

12 def __init__(self):
13 super(Pound, self).__init__()
14

15 self.bob = Bob().register(self)
16 self.fred = Fred().register(self)
17

18 def started(self, *args):
19 self.fire(Woof())
20

21

22 class Dog(Component):
23

24 def woof(self):
25 print("Woof! I’m %s!" % self.name)
26

27

28 class Bob(Dog):
29 """Bob"""
30

31

32 class Fred(Dog):
33 """Fred"""
34

35 Pound().run()

Download 006.py

Now let’s try to run this and see what happens:

Woof! I’m Bob!
Woof! I’m Fred!

So both dogs barked~ Hmmm

1.2.7 Component Channels

What if we only want one of our dogs to bark ? How do we do this without causing the other one to bark as well ?

Easy! Use a separate channel like so:

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5

8 Chapter 1. Contents

circuits Documentation, Release 2.0.1

6 class Woof(Event):
7 """Woof Event"""
8

9

10 class Pound(Component):
11

12 def __init__(self):
13 super(Pound, self).__init__()
14

15 self.bob = Bob().register(self)
16 self.fred = Fred().register(self)
17

18 def started(self, *args):
19 self.fire(Woof(), self.bob)
20

21

22 class Dog(Component):
23

24 def woof(self):
25 print("Woof! I’m %s!" % self.name)
26

27

28 class Bob(Dog):
29 """Bob"""
30

31 channel = "bob"
32

33

34 class Fred(Dog):
35 """Fred"""
36

37 channel = "fred"
38

39 Pound().run()

Download 007.py

Note: Events can be fired with either the .fire(...) or .fireEvent(...) method.

If you run this, you’ll get:

Woof! I’m Bob!

1.2.8 Event Objects

So far in our tutorial we have been defining an Event Handler for a builtin Event called Started (which incidentally
gets fired on a channel called “started”). What if we wanted to define our own Event Handlers and our own Events
? You’ve already seen how easy it is to create a new Event Handler by simply defining a normal Python method on a
Component.

Defining your own Events helps with documentation and testing and makes things a little easier.

Example:

class MyEvent(Event):
"""MyEvent"""

1.2. Tutorial 9

circuits Documentation, Release 2.0.1

So here’s our example where we’ll define a new Event called Bark and make our Dog fire a Bark event when our
application starts up.

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5 class Bark(Event):
6 """Bark Event"""
7

8 class Pound(Component):
9

10 def __init__(self):
11 super(Pound, self).__init__()
12

13 self.bob = Bob().register(self)
14 self.fred = Fred().register(self)
15

16 class Dog(Component):
17

18 def started(self, *args):
19 self.fire(Bark())
20

21 def bark(self):
22 print("Woof! I’m %s!" % self.name)
23

24 class Bob(Dog):
25 """Bob"""
26

27 channel = "bob"
28

29 class Fred(Dog):
30 """Fred"""
31

32 channel = "fred"
33

34 Pound().run()

Download 008.py

If you run this, you’ll get:

Woof! I’m Bob!
Woof! I’m Fred!

1.2.9 The Debugger

Lastly...

Asynchronous programming has many advantages but can be a little harder to write and follow. A silently caught
exception in an Event Handler, or an Event that never gets fired, or any number of other weird things can cause your
application to fail and leave you scratching your head.

Fortunately circuits comes with a Debugger Component to help you keep track of what’s going on in your applica-
tion, and allows you to tell what your application is doing.

Let’s say that we defined out bark Event Handler in our Dog Component as follows:

10 Chapter 1. Contents

circuits Documentation, Release 2.0.1

def bark(self):
print("Woof! I’m %s!" % name)

Now clearly there is no such variable as name in the local scope.

For reference here’s the entire example...

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5 class Bark(Event):
6 """Bark Event"""
7

8 class Pound(Component):
9

10 def __init__(self):
11 super(Pound, self).__init__()
12

13 self.bob = Bob().register(self)
14 self.fred = Fred().register(self)
15

16 class Dog(Component):
17

18 def started(self, *args):
19 self.fire(Bark())
20

21 def bark(self):
22 print("Woof! I’m %s!" % name)
23

24 class Bob(Dog):
25 """Bob"""
26

27 channel = "bob"
28

29 class Fred(Dog):
30 """Fred"""
31

32 channel = "fred"
33

34 Pound().run()

Download 009.py

If you run this, you’ll get:

That’s right! You get nothing! Why ? Well in circuits any error or exception that occurs in a running application
is automatically caught and dealt with in a way that lets your application “keep on going”. Crashing is unwanted
behavior in a system so we expect to be able to recover from horrible situations.

SO what do we do ? Well that’s easy. circuits come with a Debugger that lets you log all events as well as all errors
so you can quickly and easily discover which Event is causing a problem and which Event Handler to look at.

If you change Line 34 of our example...

From:

Pound().run()

1.2. Tutorial 11

circuits Documentation, Release 2.0.1

from circuits import Debugger

(Pound() + Debugger()).run()

Then run this, you’ll get the following:

<Registered[bob:registered] [<Bob/bob 3191:MainThread (queued=0, channels=2, handlers=2) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>] {}>
<Registered[fred:registered] [<Fred/fred 3191:MainThread (queued=0, channels=2, handlers=2) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>] {}>
<Registered[*:registered] [<Debugger/* 3191:MainThread (queued=0, channels=1, handlers=1) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>] {}>
<Started[*:started] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>, None] {}>
<Bark[bob:bark] [] {}>
<Bark[fred:bark] [] {}>
<Error[*:exception] [<type ’exceptions.NameError’>, NameError("global name ’name’ is not defined",), [’ File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __handleEvent\n retval = handler(*eargs, **ekwargs)\n’, ’ File "source/tutorial/009.py", line 22, in bark\n print("Woof! I\’m %s!" % name)\n’], <bound method ?.bark of <Bob/bob 3191:MainThread (queued=0, channels=2, handlers=2) [S]>>] {}>
ERROR <listener on (’bark’,) {target=’bob’, priority=0.0}> (<type ’exceptions.NameError’>): global name ’name’ is not defined

File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __handleEvent
retval = handler(*eargs, **ekwargs)
File "source/tutorial/009.py", line 22, in bark
print("Woof! I’m %s!" % name)

<Error[*:exception] [<type ’exceptions.NameError’>, NameError("global name ’name’ is not defined",), [’ File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __handleEvent\n retval = handler(*eargs, **ekwargs)\n’, ’ File "source/tutorial/009.py", line 22, in bark\n print("Woof! I\’m %s!" % name)\n’], <bound method ?.bark of <Fred/fred 3191:MainThread (queued=0, channels=2, handlers=2) [S]>>] {}>
ERROR <listener on (’bark’,) {target=’fred’, priority=0.0}> (<type ’exceptions.NameError’>): global name ’name’ is not defined

File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __handleEvent
retval = handler(*eargs, **ekwargs)

File "source/tutorial/009.py", line 22, in bark
print("Woof! I’m %s!" % name)

^C<Signal[*:signal] [2, <frame object at 0x808e8ec>] {}>
<Stopped[*:stopped] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [S]>] {}>
<Stopped[*:stopped] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [S]>] {}>

You’ll notice whereas there was no output before there is now a pretty detailed output with the Debugger added to
the application. Looking through the output, we find that the application does indeed start correctly, but when we fire
our Bark Event it coughs up two exceptions, one for each of our dogs (Bob and Fred).

From the error we can tell where the error is and roughly where to look in the code.

Note: You’ll notice many other events that are displayed in the above output. These are all default events that circuits
has builtin which your application can respond to. Each builtin Event has a special meaning with relation to the state
of the application at that point.

See: circuits.core.events for detailed documentation regarding these events.

The correct code for the bark Event Handler should be:

def bark(self):
print("Woof! I’m %s!" % self.name)

Running again with our correction results in the expected output:

Woof! I’m Bob!
Woof! I’m Fred!

That’s it folks!

Hopefully this gives you a feel of what circuits is all about and a easy tutorial on some of the basic concepts. As you’re
no doubt itching to get started on your next circuits project, here’s some recommended reading:

• Frequently Asked Questions

• HowTos

12 Chapter 1. Contents

circuits Documentation, Release 2.0.1

• API Reference

1.3 The circuits Framework

1.3.1 Components

The architectural concept of circuits is to encapsulate system functionality into discrete manageable and reusable units,
called Components, that interact by sending and handling events that flow throughout the system.

Technically, a circuits Component is a Python class that inherits (directly or indirectly) from BaseComponent.

Components can be sub-classed like any other normal Python class, however components can also be composed of
other components and it is natural to do so. These are called Complex Components. An example of a Complex
Component within the circuits library is the circuits.web.servers.Server Component which is comprised
of:

• circuits.net.sockets.TCPServer

• circuits.web.servers.BaseServer

• circuits.web.http.HTTP

• circuits.web.dispatchers.dispatcher.Dispatcher

Note that there is no class or other technical means to mark a component as a complex component. Rather, all
component instances in a circuits based application belong to some component tree (there may be several), with
Complex Components being a subtree within that structure.

A Component is attached to the tree by registering with the parent and detached by un-registering itself (methods
register() and unregister() of BaseComponent).

1.3.2 Events

Basic usage

Events are objects that are fired by the circuits framework implicitly (like the Started event used in the tutorial) or
explicitly by components while handling some other event. Once fired, events are dispatched to the components that
are interested in these events, i.e. that have registered themselves as handlers for these events.

Events are usually fired on one or more channels, allowing components to gather in “interest groups”. This is especially
useful if you want to reuse basic components such as a TCP server. A TCP server component fires a Read event for
every package of data that it receives. If we hadn’t the channels, it would be very difficult to separate the data from
two different TCP connections. But using the channels, we can put one TCP server and all components interested in
its events on one channel, and another TCP server and the components interested in this other TCP server’s events on
another channel. Components are associated with a channel by setting their channel attribute (see API description
for Component).

Besides having a name, events carry additional arbitrary information. This information is passed as arguments or key-
word arguments to the constructor. It is then delivered to the handler function that must have exactly the same number
of arguments and keyword arguments. Of course, as is usual in Python, you can also pass additional information by
setting attributes of the event object, though this usage pattern is discouraged for events.

1.3. The circuits Framework 13

circuits Documentation, Release 2.0.1

Events as result collectors

Apart from delivering information to handlers, event objects may also collect information. If a handler returns some-
thing that is not None, it is stored in the event’s value attribute. If a second (or any subsequent) handler invocation
also returns a value, the values are stored as a list. Note that the value attribute is of type Value and you must access
its property value to access the data stored (collected_information = event.value.value).

The collected information can be accessed by handlers in order to find out about any return values from the previously
invoked handlers. More useful though, is the possibility to access the information after all handlers have been invoked.
After all handlers have run successfully (i.e. no handler has thrown an error) circuits may generate an event that
indicates the successful handling. This event has the name of the event just handled with “Success” appended. So if
the event is called Identify then the success event is called IdentifySuccess. Success events aren’t delivered
by default. If you want successful handling to be indicated for an event, you have to set the optional attribute success
of this event to True.

The handler for a success event must be defined with two arguments. When invoked, the first argument is the event
just having been handled successfully and the second argument is (as a convenience) what has been collected in
event.value.value (note that the first argument may not be called event, for an explanation of this restriction
as well as for an explanation why the method is called identify_success see the section on handlers).

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4 from circuits.core.debugger import Debugger
5

6 class Identify(Event):
7 """Identify Event"""
8 success = True
9

10 class Pound(Component):
11

12 def __init__(self):
13 super(Pound, self).__init__()
14

15 Debugger().register(self)
16 Bob().register(self)
17 Fred().register(self)
18

19 def started(self, *args):
20 self.fire(Identify())
21

22 def identify_success(self, evt, result):
23 if not isinstance(result, list):
24 result = [result]
25 print "In pound:"
26 for name in result:
27 print name
28

29 class Dog(Component):
30

31 def identify(self):
32 return self.__class__.__name__
33

34 class Bob(Dog):
35 """Bob"""
36

37 class Fred(Dog):
38 """Fred"""

14 Chapter 1. Contents

circuits Documentation, Release 2.0.1

39

40 Pound().run()

Download handler_returns.py

Advanced usage

Sometimes it may be necessary to take some action when all state changes triggered by an event are in effect. In
this case it is not sufficient to wait for the completion of all handlers for this particular event. Rather, we also
have to wait until all events that have been fired by those handlers have been processed (and again wait for the
events fired by those events’ handlers, and so on). To support this scenario, circuits can fire a Complete event.
The usage is similar to the previously described success event. Details can be found in the API description of
circuits.core.events.Event.

1.3.3 Handlers

Explicit handler definition

Handlers are methods of components that are invoked when a matching event is dispatched. The question arises how
methods are made known as handlers to the circuits framework.

The ability to define methods as handlers is already provided for in Component‘s base class, the BaseComponent.
Any class that inherits from BaseComponent can advertise a method as a handler using the handler annotation.

1 #!/usr/bin/env python
2

3 from circuits.core.debugger import Debugger
4 from circuits.core.components import BaseComponent
5 from circuits.core.handlers import handler
6

7 class MyComponent(BaseComponent):
8

9 def __init__(self):
10 super(MyComponent, self).__init__()
11

12 Debugger().register(self)
13

14 @handler("started", channel="*")
15 def _on_started(self, component):
16 print "Start event detected"
17

18 MyComponent().run()

Download handler_annotation.py

The handler annotation in line 14 makes the method _on_started known to circuits as a handler for the event
Started. Event names used to define handlers are the uncameled class names of the event. An event with a class
name MySpecialEvent becomes “my_special_event” when referred to in a handler definition. The name of
the method that is annotated with @handler is of no significance. You can choose it to your liking. Throughout the
circuits source code, handler methods usually follow the pattern “_on_some_event”. This makes it obvious to the
reader that the method is not part of the class’s public API (leading underscore as per Python convention) and that it is
invoked for events of type SomeEvent.

The optional keyword argument “channel” can be used to attach the handler to a different channel than the compo-
nent’s channel (as specified by the component’s channel attribute).

1.3. The circuits Framework 15

circuits Documentation, Release 2.0.1

Handler methods must be declared with arguments and keyword arguments that match the arguments passed to the
event upon its creation. Looking at the API for Started you’ll find that the component that has been started is passed
as an argument to its constructor. Therefore, our handler method must declare one argument (line 15).

The handler annotation accepts some more keyword arguments that influence the behavior of the handler and its
invocation. Details can be found in the API description of handler().

Automatic handler definition

To easy the implementation of components with (mostly) standard handlers, components can be derived from
Component. For such classes a @handler("method_name") annotation is applied automatically to all method,
unless the method’s name starts with an underscore or the method has already an explicit @handler annotation.

1.3.4 Values

...

1.3.5 Debugging

...

1.3.6 Tools

...

1.3.7 Ticks

...

1.3.8 Futures

...

1.3.9 Manager

...

1.4 The circuits.web Framework

1.4.1 Introduction

circuits.web is a set of components for building high performance HTTP/1.1 and WSGI/1.0 compliant web applica-
tions. These components make it easy to rapidly develop rich, scalable web applications with minimal effort.

circuits.web borrows from

• CherryPy

16 Chapter 1. Contents

http://www.cherrypy.org

circuits Documentation, Release 2.0.1

• BaseHTTPServer (Python std. lib)

• wsgiref (Python std. lib)

Overview

The circuits.web namespace contains the following exported components and events for convenience:

Events

Event Description
Request The Request Event
Response The Response Event
Stream The Stream Event

Servers

Server Description
BaseServer The Base Server (no Dispatcher)
Server The full Server + Dispatcher

Error Events

Error Description
HTTPError A generic HTTP Error Event
Forbidden A Forbidden (403) Event
NotFound A Not Found (404) Event
Redirect A Redirect (30x) Event

Dispatchers

Dispatcher Description
Static A Static File Dispatcher
Dispatcher The Default Dispatcher
VirtualHosts Virtual Hosts Dispatcher
XMLRPC XML-RPC Dispatcher
JSONRPC JSON-RPC Dispatcher

Other Components

Component Description
Logger Default Logger
Controller Request Handler Mapper
Sessions Default Sessions Handler

To start working with circuits.web one normally only needs to import from circuits.web, for example:

1.4. The circuits.web Framework 17

circuits Documentation, Release 2.0.1

1 from circuits import Component
2 from circuits.web import BaseServer
3

4 class Root(Component):
5

6 def request(self, request, response):
7 return "Hello World!"
8

9 (BaseServer(8000) + Root()).run()

For further information regarding any of circuits.web’s components, events or other modules and functions refer to the
API Documentation.

1.4.2 Getting Started

Just like any application or system built with circuits, a circuits.web application follows the standard Component based
design and structure whereby functionality is encapsulated in components. circuits.web itself is designed and built in
this fashion. For example a circuits.web Server’s structure looks like this:

To illustrate the basic steps, we will demonstrate developing your classical “Hello World!” applications in a web-based
way with circuits.web

To get started, we first import the necessary components:

from circutis.web import Server, Controller

Next we define our first Controller with a single Request Handler defined as our index. We simply return “Hello
World!” as the response for our Request Handler.

class Root(Controller):

def index(self):
return "Hello World!"

This completes our simple web application which will respond with “Hello World!” when anyone accesses it.

Admittedly this is a stupidly simple web application! But circuits.web is very powerful and plays nice with other tools.

Now we need to run the application:

(Server(8000) + Root()).run()

18 Chapter 1. Contents

circuits Documentation, Release 2.0.1

That’s it! Navigate to: http://127.0.0.1:8000/ and see the result.

Here’s the complete code:

1 from circuits.web import Server, Controller
2

3 class Root(Controller):
4

5 def index(self):
6 return "Hello World!"
7

8 (Server(8000) + Root()).run()

Have fun!

1.4.3 The Basics

circuits.web is not a full stack web framework, rather it is more closely aligned with CherryPy and offers enough
functionality to make quickly developing web applications easy and as flexible as possible. circuits.web does not
provide features such as:

• builtin Templating

• builtin Database or ORM tools

• etc

The functionality that circutis.web does provide ensures that circuits.web is fully HTTP/1.1 and WSGI/1.0 compliant
and offers all the essential tools you need to build your web application or website.

1.4.4 How To Guide(s)

1.4.5 Application Deployment

1.4.6 Controllers

1.4.7 Dispatchers

1.4.8 Tools

1.5 HowTos

1.5.1 How To: Build a Simple Server

Overview

In this guide we’re going to walk through the steps required to build a simple chat server. Users will connect using a
standard telnet client and start chatting with other users that are connected.

Prerequisites

• Python

1.5. HowTos 19

http://127.0.0.1:8000/
http://www.cherrypy.org
http://www.python.org

circuits Documentation, Release 2.0.1

• circuits

Components Used

• Component

• TCPServer

Events Used

• Write

Step 1 - Setting up

Let’s start off by importing the components and events we’ll need.

#!/usr/bin/env python

from circuits import Component
from circuits.net.sockets import TCPServer, Write

Step 2 - Building the Server

Next let’s define our Server Component with a simple event handler that broadcasts all incoming messages to every
connected client. We’ll keep a list of clients connected to our server in self._clients.

We need to define three event handlers.

1. An event handler to update our list of connected clients when a new client connects.

2. An event handler to update our list of connected clients when a client has disconnected.

3. An event handler to handle messages from connected clients and broadcast them to every other connected client.

class Server(Component):

def __init__(self, host, port=8000):
super(Server, self).__init__()

self._clients = []

TCPServer((host, port)).register(self)

def connect(self, sock, host, port):
self._clients.append(sock)

def disconnect(self, sock):
self._clients.remove(sock)

def read(self, sock, data):
for client in self._clients:

if not client == sock:
self.fire(Write(client, data.strip()))

Let’s walk through this in details:

1. Create a new Component called Server

20 Chapter 1. Contents

http://pypi.python.org/circuits

circuits Documentation, Release 2.0.1

2. Define its initialization arguments as (host, port=8000)

3. Call the super constructor of the underlying Component (This is important as all components need to be initial-
ized properly)

4. Register a TCPServer Component and configure it.

5. Create Event Handlers for:

• Dealing with new connecting clients.

• Dealing with clients whom have disconnected.

• Dealing with messages from connected clients.

Step 3 - Running the Server

The last step is simply to create an instance of the Server Component and run it (making sure to configure it with a
host and port).

Server("localhost").run()

That’s it!

Using a standard telnet client try connecting to localhost on port 8000. Try connecting a second client and watch what
happens in the 2nd client when you type text into the 1st.

Enjoy!

Source Code

1 #!/usr/bin/env python
2

3 from circuits import Component
4 from circuits.net.sockets import TCPServer, Write
5

6 class Server(Component):
7

8 def __init__(self, host, port=8000):
9 super(Server, self).__init__()

10

11 self._clients = []
12

13 TCPServer((host, port)).register(self)
14

15 def connect(self, sock, host, port):
16 self._clients.append(sock)
17

18 def disconnect(self, sock):
19 self._clients.remove(sock)
20

21 def read(self, sock, data):
22 for client in self._clients:
23 if not client == sock:
24 self.fire(Write(client, data.strip()))
25

26 Server("localhost").run()

Download simple_server.py

1.5. HowTos 21

circuits Documentation, Release 2.0.1

1.6 API Reference

1.6.1 circuits.core – Core Functionality

Core

This package contains the essential core parts of the circuits framework.

circuits.core.components – Components

This module defines the BaseComponent and its subclass Component.

Classes

class circuits.core.components.BaseComponent(*args, **kwargs)
Bases: circuits.core.manager.Manager

This is the base class for all components in a circuits based application. Components can (and should, except
for root components) be registered with a parent component.

BaseComponents can declare methods as event handlers using the handler decoration (see
circuits.core.handlers.handler()). The handlers are invoked for matching events from the
component’s channel (specified as the component’s channel attribute).

BaseComponents inherit from circuits.core.manager.Manager. This provides components with the
circuits.core.manager.Manager.fireEvent()method that can be used to fire events as the result
of some computation.

Apart from the fireEvent() method, the Manager nature is important for root components that are started
or run.

Variables channel – a component can be associated with a specific channel by setting this attribute.
This should either be done by specifying a class attribute channel in the derived class or by
passing a keyword parameter channel=”...” to __init__. If specified, the component’s handlers
receive events on the specified channel only, and events fired by the component will be sent
on the specified channel (this behavior may be overridden, see Event, fireEvent() and
handler()). By default, the channel attribute is set to “*”, meaning that events are fired on
all channels and received from all channels.

initializes x; see x.__class__.__doc__ for signature

register(parent)
Inserts this component in the component tree as a child of the given parent node.

Parameters parent (Manager) – the parent component after registration has completed.

This method fires a Registered event to inform other components in the tree about the new member.

unregister()
Removes this component from the component tree.

Removing a component from the component tree is a two stage process. First, the component is marked
as to be removed, which prevents it from receiving further events, and a PrepareUnregister event is
fired. This allows other components to e.g. release references to the component to be removed before it is
actually removed from the component tree.

After the processing of the PrepareUnregister event has completed, the component is removed from
the tree and an Unregistered event is fired.

22 Chapter 1. Contents

circuits Documentation, Release 2.0.1

class circuits.core.components.Component(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

If you use Component instead of BaseComponent as base class for your own component class, then all methods
that are not marked as private (i.e: start with an underscore) are automatically decorated as handlers.

The methods are invoked for all events from the component’s channel where the event’s name matches the
method’s name.

Components

none

Events

class circuits.core.components.PrepareUnregister(*args, **kwargs)
Bases: circuits.core.events.Event

This event is fired when a component is about to be unregistered from the component tree. Unregistering a
component actually detaches the complete subtree that the unregistered component is the root of. Components
that need to know if they are removed from the main tree (e.g. because they maintain relationships to other
components in the tree) handle this event, check if the component being unregistered is one of their ancestors
and act accordingly.

Parameters component – the component that will be unregistered

in_subtree(component)
Convenience method that checks if the given component is in the subtree that is about to be detached.

class circuits.core.components.SingletonError
Bases: exceptions.Exception

Raised if a Component with the singleton class attribute is True.

Functions

none

circuits.core.events – Events

This module defines the basic Event class and common events.

Classes

class circuits.core.events.Event(*args, **kwargs)
Bases: circuits.core.events.BaseEvent

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

1.6. API Reference 23

circuits Documentation, Release 2.0.1

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

none

Events

class circuits.core.events.Error(type, value, traceback, handler=None)
Bases: circuits.core.events.Event

Error Event

This Event is sent for any exceptions that occur during the execution of an Event Handler that is not SystemExit
or KeyboardInterrupt.

Parameters

• type (type) – type of exception

• value (exceptions.TypeError) – exception object

• traceback (traceback) – traceback of exception

• kwargs (dict) – (Optional) Additional Information

class circuits.core.events.Failure(*args, **kwargs)
Bases: circuits.core.events.DerivedEvent

Failure Event

This Event is sent when an error has occurred with the execution of an Event Handlers.

24 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Parameters event (Event) – The event that failed

class circuits.core.events.Registered(component, manager)
Bases: circuits.core.events.Event

Registered Event

This Event is sent when a Component has registered with another Component or Manager. This Event is only
sent iif the Component or Manager being registered with is not itself.

Parameters

• component (Component) – The Component being registered

• manager (Component or Manager) – The Component or Manager being registered with

class circuits.core.events.Signal(signal, stack)
Bases: circuits.core.events.Event

Signal Event

This Event is sent when a Component receives a signal.

Parameters

• signal – The signal number received.

• stack – The interrupted stack frame.

class circuits.core.events.Started(component)
Bases: circuits.core.events.Event

Started Event

This Event is sent when a Component has started running.

Parameters component (Component or Manager) – The component that was started

class circuits.core.events.Stopped(component)
Bases: circuits.core.events.Event

Stopped Event

This Event is sent when a Component has stopped running.

Parameters component (Component or Manager) – The component that has stopped

class circuits.core.events.Success(*args, **kwargs)
Bases: circuits.core.events.DerivedEvent

Success Event

This Event is sent when all handlers (for a particular event) have been executed successfully, see Manager.

Parameters event (Event) – The event that has completed.

class circuits.core.events.Unregister(component=None)
Bases: circuits.core.events.Event

Unregister Event

This Event ask for a Component to unregister from its Component or Manager.

class circuits.core.events.Unregistered(component, manager)
Bases: circuits.core.events.Event

Unregistered Event

This Event is sent when a Component has been unregistered from its Component or Manager.

1.6. API Reference 25

circuits Documentation, Release 2.0.1

Functions

none

circuits.core.handlers – Handlers

This module define the @handler decorator/function and the HandlesType type.

Classes

class circuits.core.handlers.HandlerMetaClass(name, bases, ns)
Bases: type

Components

none

Events

none

Functions

circuits.core.handlers.handler(*names, **kwargs)
Creates an Event Handler

This decorator can be applied to methods of classes derived from
circuits.core.components.BaseComponent. It marks the method as a handler for the events
passed as arguments to the @handler decorator. The events are specified by their name.

The decorated method’s arguments must match the arguments passed to the
circuits.core.events.Event on creation. Optionally, the method may have an additional first
argument named event. If declared, the event object that caused the handler to be invoked is assigned to it.

By default, the handler is invoked by the component’s root Manager for events that are propagated on the
channel determined by the BaseComponent’s channel attribute. This may be overridden by specifying a different
channel as a keyword parameter of the decorator (channel=...).

Keyword argument priority influences the order in which handlers for a specific event are invoked. The
higher the priority, the earlier the handler is executed.

A handler may also be specified as a filter by adding the keyword argument filter=True to the decorator.
If such a handler returns a value different from None, no more handlers are invoked for the handled event.
Filtering handlers are invoked before normal handlers with the same priority (but after any handlers with higher
priority).

If you want to override a handler defined in a base class of your component, you must specify
override=True, else your method becomes an additional handler for the event.

Finally, a handler may be defined as a “tick”-handler by specifying tick=True. Such a handler is invoked at
regular intervals (“polling”).

Return value

26 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Normally, the results returned by the handlers for an event are simply collected in the
circuits.core.events.Event‘s value attribute. As a special case, a handler may return a
types.GeneratorType. This signals to the dispatcher that the handler isn’t ready to deliver a result yet.
Rather, it has interrupted it’s execution with a yield None statement, thus preserving its current execution
state.

The dispatcher saves the returned generator object as a task. All tasks are reexamined (i.e. their next()method
is invoked) when the pending events have been executed.

This feature avoids an unnecessarily complicated chaining of event handlers. Imagine a handler A that needs the
results from firing an event E in order to complete. Then without this feature, the final action of A would be to
fire event E, and another handler for an event SuccessE would be required to complete handler A’s operation,
now having the result from invoking E available (actually it’s even a bit more complicated).

Using this “suspend” feature, the handler simply fires event E and then yields None until e.g. it
finds a result in E’s value attribute. For the simplest scenario, there even is a utility method
circuits.core.manager.Manager.callEvent() that combines firing and waiting.

circuits.core.manager – Manager

This module defines the Manager class.

Classes

class circuits.core.manager.Manager(*args, **kwargs)
Bases: object

The manager class has two roles. As a base class for component implementation, it provides methods for event
and handler management. The method fireEvent() appends a new event at the end of the event queue for
later execution. waitEvent() suspends the execution of a handler until all handlers for a given event have
been invoked. callEvent() combines the last two methods in a single method.

The methods addHandler() and removeHandler() allow handlers for events to be added and removed
dynamically. (The more common way to register a handler is to use the handler() decorator or derive the
class from Component.)

In its second role, the Manager takes the role of the event executor. Every component hierarchy has a root
component that maintains a queue of events. Firing an event effectively means appending it to the event queue
maintained by the root manager. The flush() method removes all pending events from the queue and, for
each event, invokes all the handlers. Usually, flush() is indirectly invoked by run().

The manager optionally provides information about the execution of events as automatically generated events.
If an Event has its success attribute set to True, the manager fires a Success event if all handlers have
been executed without error. Note that this event will be enqueued (and dispatched) immediately after the events
that have been fired by the event’s handlers. So the success event indicates both the successful invocation of all
handlers for the event and the processing of the immediate follow-up events fired by those handlers.

Sometimes it is not sufficient to know that an event and its immediate follow-up events have been processed.
Rather, it is important to know when all state changes triggered by an event, directly or indirectly, have been
performed. This also includes the processing of events that have been fired when invoking the handlers for
the follow-up events and the processing of events that have again been fired by those handlers and so on. The
completion of the processing of an event and all its direct or indirect follow-up events may be indicated by a
Complete event. This event is generated by the manager if Event has its complete attribute set to True.

Apart from the event queue, the root manager also maintains the list of “tick”-handlers, which are to be invoked
at regular intervals (see handler()) and a list of tasks, actually Python generators, that are updated when the
event queue has been flushed.

1.6. API Reference 27

circuits Documentation, Release 2.0.1

initializes x; see x.__class__.__doc__ for signature

name
Return the name of this Component/Manager

running
Return the running state of this Component/Manager

fireEvent(event, *channels)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

fire(event, *channels)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

callEvent(event, *channels)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

call(event, *channels)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

flushEvents()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

flush()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

start(process=False)
Start a new thread or process that invokes this manager’s run() method. The invocation of this method
returns immediately after the task or process has been started.

stop()
Stop this manager. Invoking this method either causes an invocation of run() to return or terminates the
thread or process associated with the manager.

tick(timeout=-1)
Execute all possible actions once. Check for any registered tick handlers and run them, process all regis-

28 Chapter 1. Contents

circuits Documentation, Release 2.0.1

tered tasks and flush the event queue. If the application is running fire a GenerateEvents to get new events
from sources.

This method is usually invoked from run(). It may also be used to build an application specific main
loop.

Parameters timeout (float, measuring seconds) – the maximum waiting time spent in this
method. If negative, the method may block until at least one action has been taken.

run()
Run this manager. The method fires the Started event and then continuously calls tick().

The method returns when the manager’s stop() method is invoked.

If invoked by a programs main thread, a signal handler for the INT and TERM signals is installed. This
handler fires the corresponding Signal events and then calls stop() for the manager.

Components

none

Events

none

Functions

none

circuits.core.values – Value

This defines the Value object used by components and events.

Classes

class circuits.core.values.Value(event=None, manager=None, notify=False)
Bases: object

Create a new future Value Object

Creates a new future Value Object which is used by Event Objects and the Manager to store the result(s) of an
Event Handler’s exeuction of some Event in the system.

Parameters

• event (Event instance) – The Event this Value is associated with.

• manager (A Manager/Component instance.) – The Manager/Component used to trigger
notifications.

• notify (bool) – True to notify of changes to this value

Variables

• result – True if this value has been changed.

• errors – True if while setting this value an exception occured.

1.6. API Reference 29

circuits Documentation, Release 2.0.1

This is a Future/Promise implementation.

Components

none

Events

none

Functions

none

circuits.core.futures – Futures

Classes

none

Components

none

Events

none

Functions

circuits.core.futures.future(pool=None)
Decorator to wrap an event handler in a future Task

This decorator wraps an event handler into a background Task executing the event handler function in the
background.

Parameters pool (Pool) – An optional thread/process pool

circuits.core.pollers – I/O Pollers

Classes

none

30 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Components

class circuits.core.pollers.BasePoller(timeout=0.01, channel=None)
Bases: circuits.core.components.BaseComponent

class circuits.core.pollers.Select(timeout=0.01, channel=’select’)
Bases: circuits.core.pollers.BasePoller

Select(...) -> new Select Poller Component

Creates a new Select Poller Component that uses the select poller implementation. This poller is not rec-
ommended but is available for legacy reasons as most systems implement select-based polling for backwards
compatibility.

class circuits.core.pollers.Poll(timeout=0.01, channel=’poll’)
Bases: circuits.core.pollers.BasePoller

Poll(...) -> new Poll Poller Component

Creates a new Poll Poller Component that uses the poll poller implementation.

class circuits.core.pollers.EPoll(timeout=0.01, channel=’epoll’)
Bases: circuits.core.pollers.BasePoller

EPoll(...) -> new EPoll Poller Component

Creates a new EPoll Poller Component that uses the epoll poller implementation.

Events

none

Functions

none

circuits.core.pools – Worker Pools

Pools

Thread and Process based “worker” pools.

Events

none

Components

class circuits.core.pools.Pool(min=5, max=10, processes=False, channel=’pool’)
Bases: circuits.core.components.BaseComponent

Functions

none

1.6. API Reference 31

circuits Documentation, Release 2.0.1

circuits.core.timers – Timers

Timer component to facilitate timed events.

Classes

none

Components

class circuits.core.timers.Timer(interval, event, *channels, **kwargs)
Bases: circuits.core.components.BaseComponent

A timer is a component that fires an event once after a certain delay or periodically at a regular interval.

Parameters

• interval (datetime or float number) – the delay or interval to wait for until the event is fired.
If interval is specified as datetime, the interval is recalculated as the time span from now to
the given datetime.

• event (Event) – the event to fire.

If the optional keyword argument persist is set to True, the event will be fired repeatedly. Else the timer fires
the event once and then unregisters itself.

reset()
Reset the timer, i.e. clear the amount of time already waited for.

Events

none

Functions

none

circuits.core.loader – Loader

This module implements a generic Loader suitable for dynamically loading components from other modules. This
supports loading from local paths, eggs and zip archives. Both setuptools and distribute are fully supported.

Classes

none

32 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Components

class circuits.core.loader.Loader(auto_register=True, init_args=None, init_kwargs=None,
paths=None, channel=’loader’)

Bases: circuits.core.components.BaseComponent

Create a new Loader Component

Creates a new Loader Component that enables dynamic loading of components from modules either in local
paths, eggs or zip archives.

initializes x; see x.__class__.__doc__ for signature

Events

none

Functions

none

circuits.core.utils – Utilities

Utils

This module defines utilities used by circuits.

Classes

none

Components

none

Events

none

Functions

circuits.core.utils.findchannel(root, channel, all=False)

circuits.core.utils.findcmp(root, component, all=False)

circuits.core.utils.findroot(component)

circuits.core.utils.findtype(root, component, all=False)

circuits.core.utils.flatten(root, visited=None)

circuits.core.utils.safeimport(name)

1.6. API Reference 33

circuits Documentation, Release 2.0.1

circuits.core.workers – Workers

Workers

Worker components used to perform “work” in independent threads or processes. Worker(s) are typically used by
a Pool (circuits.core.pools) to create a pool of workers. Worker(s) are not registered with a Manager or another
Component - instead they are managed by the Pool. If a Worker is used independently it should not be registered as it
causes its main event handler _on_task to execute in the other thread blocking it.

Classes

none

Components

class circuits.core.workers.Worker(process=False, channel=’worker’)
Bases: circuits.core.components.BaseComponent

A thread/process Worker Component

This Component creates a Worker (either a thread or process) which when given a Task, will execute the given
function in the task in the background in its thread/process.

Parameters process (bool) – True to start this Worker as a process (Thread otherwise)

Events

class circuits.core.workers.Task(f, *args, **kwargs)
Bases: circuits.core.events.Event

Task Event

This Event is used to initiate a new task to be performed by a Worker or a Pool of Worker(s).

Parameters

• f (function) – The function to be executed.

• args (tuple) – Arguments to pass to the function

• kwargs (dict) – Keyword Arguments to pass to the function

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

Functions

none

circuits.core.debugger – Debugger

Debugger component used to debug each event in a system by printing each event to sys.stderr or to a Logger Com-
ponent instance.

34 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Classes

none

Components

class circuits.core.debugger.Debugger(errors=True, events=True, file=None, logger=None, pre-
fix=None, trim=None, **kwargs)

Bases: circuits.core.components.BaseComponent

Create a new Debugger Component

Creates a new Debugger Component that filters all events in the system printing each event to sys.stderr or a
Logger Component.

Variables

• IgnoreEvents – list of events (str) to ignore

• IgnoreChannels – list of channels (str) to ignore

• enabled – Enabled/Disabled flag

Parameters log – Logger Component instance or None (default)

initializes x; see x.__class__.__doc__ for signature

Events

none

Functions

none

1.6.2 circuits.io – I/O Support

I/O Support

This package contains various I/O Components. Provided are a a generic File Component, StdIn, StdOut and StdErr
components. Instances of StdIn, StdOUt and StdErr are also created by importing this package.

circuits.io.events – I/O Events

Events

class circuits.io.events.Close(*args, **kwargs)
Bases: circuits.core.events.Event

Close Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

1.6. API Reference 35

circuits Documentation, Release 2.0.1

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.io.events.Closed(*args, **kwargs)
Bases: circuits.core.events.Event

Closed Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

36 Chapter 1. Contents

circuits Documentation, Release 2.0.1

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.io.events.EOF(*args, **kwargs)
Bases: circuits.core.events.Event

EOF Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.io.events.Error(*args, **kwargs)
Bases: circuits.core.events.Event

1.6. API Reference 37

circuits Documentation, Release 2.0.1

Error Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.io.events.Opened(*args, **kwargs)
Bases: circuits.core.events.Event

Opened Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

38 Chapter 1. Contents

circuits Documentation, Release 2.0.1

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.io.events.Read(*args, **kwargs)
Bases: circuits.core.events.Event

Read Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

1.6. API Reference 39

circuits Documentation, Release 2.0.1

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.io.events.Seek(*args, **kwargs)
Bases: circuits.core.events.Event

Seek Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.io.events.Write(*args, **kwargs)
Bases: circuits.core.events.Event

Write Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

40 Chapter 1. Contents

circuits Documentation, Release 2.0.1

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

none

Functions

none

circuits.io.file – File I/O

Events

none

Components

class circuits.io.file.File(filename=None, mode=’r’, fd=None, autoclose=True, bufsize=4096,
encoding=’utf-8’, channel=’file’)

Bases: circuits.core.components.Component

Functions

none

1.6. API Reference 41

circuits Documentation, Release 2.0.1

circuits.io.notify – File System Notification

Events

Components

Functions

circuits.io.serial – Serial I/O

Events

none

Components

class circuits.io.serial.Serial(port, baudrate=115200, bufsize=4096, timeout=0.2, chan-
nel=’serial’)

Bases: circuits.core.components.Component

Functions

none

1.6.3 circuits.net – Networking

Networking Components

This package contains components that implement network sockets and protocols for implementing client and server
network applications.

copyright CopyRight (C) 2004-2012 by James Mills

license MIT (See: LICENSE)

circuits.net.protocols – Networking Protocols

Networking Protocols

This package contains components that implement various networking protocols.

circuits.net.protocols.http – HTTP Protocol

Events
class circuits.net.protocols.http.Request(*args, **kwargs)

Bases: circuits.core.events.Event

Request Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

42 Chapter 1. Contents

circuits Documentation, Release 2.0.1

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.net.protocols.http.Response(*args, **kwargs)
Bases: circuits.core.events.Event

Response Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

1.6. API Reference 43

circuits Documentation, Release 2.0.1

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components
class circuits.net.protocols.http.HTTP(encoding=’utf-8’, channel=’web’)

Bases: circuits.core.components.BaseComponent

Functions

circuits.net.protocols.irc – IRC Protocol

Events
class circuits.net.protocols.irc.RAW(*args, **kwargs)

Bases: circuits.net.protocols.irc.Command

RAW command

Components
class circuits.net.protocols.irc.IRC(*args, **kwargs)

Bases: circuits.core.components.Component

IRC Protocol Component

Creates a new IRC Component instance that implements the IRC Protocol. Incoming messages are handled by
the “read” Event Handler, parsed and processed with appropriate Events created and exposed to the rest of te
system to listen to and handle.

@note: This Component must be used in conjunction with a Component that exposes Read Events on a
“read” Channel.

line(line)
Line Event Handler

Process a line of text and generate the appropiate event. This must not be overridden by sub-classes, if it
is, this must be explitetly called by the sub-class. Other Components may however listen to this event and
process custom IRC events.

Functions

44 Chapter 1. Contents

circuits Documentation, Release 2.0.1

circuits.net.protocols.line – Line Protocol

Events
class circuits.net.protocols.line.Line(*args, **kwargs)

Bases: circuits.core.events.Event

Line Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components
class circuits.net.protocols.line.LP(*args, **kwargs)

Bases: circuits.core.components.BaseComponent

Line Protocol

Implements the Line Protocol.

Incoming data is split into lines with a splitter function. For each line of data processed a Line Event is created.
Any unfinished lines are appended into an internal buffer.

A custom line splitter function can be passed to customize how data is split into lines. This function must accept
two arguments, the data to process and any left over data from a previous invocation of the splitter function. The
function must also return a tiple of two items, a list of lines and any left over data.

1.6. API Reference 45

circuits Documentation, Release 2.0.1

Parameters splitter (function) – a line splitter function

This Component operates in two modes. In normal operation it’s expected to be used in conjunction with com-
ponents that expose a Read Event on a “read” channel with only one argument (data). Some builtin components
that expose such events are: - circuits.net.sockets.TCPClient - circuits.io.File

The second mode of operation works with circuits.net.sockets.Server components such as TCPServer,
UNIXServer, etc. It’s expected that two arguments exist in the Read Event, sock and data. The following
two arguments can be passed to affect how unfinished data is stored and retrieved for such components:

Parameters getBuffer (function) – function to retrieve the buffer for a client sock

This function must accept one argument (sock,) the client socket whoose buffer is to be retrieved.

Parameters updateBuffer (function) – function to update the buffer for a client sock

This function must accept two arguments (sock, buffer,) the client socket and the left over buffer to be updated.

@note: This Component must be used in conjunction with a Component that exposes Read events on a
“read” Channel.

initializes x; see x.__class__.__doc__ for signature

Functions

circuits.net.protocols.http – HTTP Protocol

Events

class circuits.net.protocols.http.Request(*args, **kwargs)
Bases: circuits.core.events.Event

Request Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

46 Chapter 1. Contents

circuits Documentation, Release 2.0.1

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.net.protocols.http.Response(*args, **kwargs)
Bases: circuits.core.events.Event

Response Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.net.protocols.http.HTTP(encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

1.6. API Reference 47

circuits Documentation, Release 2.0.1

Functions

circuits.net.protocols.irc – IRC Protocol

Events

class circuits.net.protocols.irc.RAW(*args, **kwargs)
Bases: circuits.net.protocols.irc.Command

RAW command

Components

class circuits.net.protocols.irc.IRC(*args, **kwargs)
Bases: circuits.core.components.Component

IRC Protocol Component

Creates a new IRC Component instance that implements the IRC Protocol. Incoming messages are handled by
the “read” Event Handler, parsed and processed with appropriate Events created and exposed to the rest of te
system to listen to and handle.

@note: This Component must be used in conjunction with a Component that exposes Read Events on a
“read” Channel.

line(line)
Line Event Handler

Process a line of text and generate the appropiate event. This must not be overridden by sub-classes, if it
is, this must be explitetly called by the sub-class. Other Components may however listen to this event and
process custom IRC events.

Functions

circuits.net.protocols.line – Line Protocol

Events

class circuits.net.protocols.line.Line(*args, **kwargs)
Bases: circuits.core.events.Event

Line Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to

48 Chapter 1. Contents

circuits Documentation, Release 2.0.1

as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.net.protocols.line.LP(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

Line Protocol

Implements the Line Protocol.

Incoming data is split into lines with a splitter function. For each line of data processed a Line Event is created.
Any unfinished lines are appended into an internal buffer.

A custom line splitter function can be passed to customize how data is split into lines. This function must accept
two arguments, the data to process and any left over data from a previous invocation of the splitter function. The
function must also return a tiple of two items, a list of lines and any left over data.

Parameters splitter (function) – a line splitter function

This Component operates in two modes. In normal operation it’s expected to be used in conjunction with com-
ponents that expose a Read Event on a “read” channel with only one argument (data). Some builtin components
that expose such events are: - circuits.net.sockets.TCPClient - circuits.io.File

The second mode of operation works with circuits.net.sockets.Server components such as TCPServer,
UNIXServer, etc. It’s expected that two arguments exist in the Read Event, sock and data. The following
two arguments can be passed to affect how unfinished data is stored and retrieved for such components:

Parameters getBuffer (function) – function to retrieve the buffer for a client sock

This function must accept one argument (sock,) the client socket whoose buffer is to be retrieved.

Parameters updateBuffer (function) – function to update the buffer for a client sock

This function must accept two arguments (sock, buffer,) the client socket and the left over buffer to be updated.

@note: This Component must be used in conjunction with a Component that exposes Read events on a
“read” Channel.

1.6. API Reference 49

circuits Documentation, Release 2.0.1

initializes x; see x.__class__.__doc__ for signature

Functions

circuits.net.sockets – Socket Components

Events

class circuits.net.sockets.Connect(*args, **kwargs)
Bases: circuits.core.events.Event

Connect Event

This Event is sent when a new client connection has arrived on a server. This event is also used for client’s to
initiate a new connection to a remote host.

Note: This event is used for both Client and Server Components.

Parameters

• args (tuple) – Client: (host, port) Server: (sock, host, port)

• kwargs (dict) – Client: (ssl)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.net.sockets.Connected(host, port)
Bases: circuits.core.events.Event

Connected Event

This Event is sent when a client has successfully connected.

@note: This event is for Client Components.

Parameters

• host – The hostname connected to.

• port – The port connected to

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.net.sockets.Close(*args)
Bases: circuits.core.events.Event

Close Event

This Event is used to notify a client, client connection or server that we want to close.

@note: This event is never sent, it is used to close. @note: This event is used for both Client and Server
Components.

Parameters args – Client: () Server: (sock)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.net.sockets.Closed
Bases: circuits.core.events.Event

Closed Event

50 Chapter 1. Contents

circuits Documentation, Release 2.0.1

This Event is sent when a server has closed its listening socket.

@note: This event is for Server components.

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.net.sockets.Read(*args)
Bases: circuits.core.events.Event

Read Event

This Event is sent when a client or server connection has read any data.

@note: This event is used for both Client and Server Components.

Parameters args – Client: (data) Server: (sock, data)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.net.sockets.Write(*args)
Bases: circuits.core.events.Event

Write Event

This Event is used to notify a client, client connection or server that we have data to be written.

@note: This event is never sent, it is used to send data. @note: This event is used for both Client and Server
Components.

Parameters args – Client: (data) Server: (sock, data)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.net.sockets.Error(*args)
Bases: circuits.core.events.Event

Error Event

This Event is sent when a client or server connection has an error.

@note: This event is used for both Client and Server Components.

Parameters args – Client: (error) Server: (sock, error)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.net.sockets.Disconnect(*args)
Bases: circuits.core.events.Event

Disconnect Event

This Event is sent when a client connection has closed on a server. This event is also used for client’s to
disconnect from a remote host.

@note: This event is used for both Client and Server Components.

Parameters args – Client: () Server: (sock)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.net.sockets.Disconnected
Bases: circuits.core.events.Event

Disconnected Event

This Event is sent when a client has disconnected

@note: This event is for Client Components.

1.6. API Reference 51

circuits Documentation, Release 2.0.1

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

Components

class circuits.net.sockets.Client(bind=None, bufsize=4096, channel=’client’)
Bases: circuits.core.components.Component

channel = ‘client’

connected

close()

write(data)

class circuits.net.sockets.TCPClient(bind=None, bufsize=4096, channel=’client’)
Bases: circuits.net.sockets.Client

connect(host, port, secure=False, **kwargs)

circuits.net.sockets.UDPClient
alias of UDPServer

class circuits.net.sockets.UNIXClient(bind=None, bufsize=4096, channel=’client’)
Bases: circuits.net.sockets.Client

ready(component)

connect(path, secure=False, **kwargs)

class circuits.net.sockets.Server(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.core.components.Component

channel = ‘server’

connected

host

port

close(sock=None)

write(sock, data)

broadcast(data)

class circuits.net.sockets.TCPServer(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

class circuits.net.sockets.UDPServer(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

close()

write(address, data)

broadcast(data, port)

class circuits.net.sockets.UNIXServer(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

52 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Functions

circuits.net.sockets.Pipe(*channels, **kwargs)
Create a new full duplex Pipe

Returns a pair of UNIXClient instances connected on either side of the pipe.

1.6.4 circuits.node – Node

Node

Distributed and Inter-Processing support for circuits

circuits.node.client – Client

Client

...

Events

none

Components

class circuits.node.client.Client(host, port, channel=’node’)
Bases: circuits.core.components.BaseComponent

Client

...

Functions

none

circuits.node.events – Events

Events

...

Events

class circuits.node.events.Packet(*args, **kwargs)
Bases: circuits.core.events.Event

Packet Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

1.6. API Reference 53

circuits Documentation, Release 2.0.1

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.node.events.Remote(event, node, channel=None)
Bases: circuits.core.events.Event

Remote Event

...

Components

none

Functions

none

circuits.node.node – Node

Node

...

54 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Events

none

Components

class circuits.node.node.Node(bind=None, channel=’node’)
Bases: circuits.core.components.BaseComponent

Node

...

Functions

none

circuits.node.server – Server

Server

...

Events

none

Components

class circuits.node.server.Server(bind, channel=’node’)
Bases: circuits.core.components.BaseComponent

Server

...

Functions

none

circuits.node.utils – Node Utilities

Utils

...

Events

none

1.6. API Reference 55

circuits Documentation, Release 2.0.1

Components

none

Functions

circuits.node.utils.dump_event(e, id)

circuits.node.utils.dump_value(v)

circuits.node.utils.load_event(s)

circuits.node.utils.load_value(v)

1.6.5 circuits.tools – Development Tools

Often you will end up needing to do some debugging or inspection of your system. The circuits.tools package provides
a set of development tools for debugging, inspection and analysis.

circuits.tools.graph(x, name=None)
Display a directed graph of the Component structure of x

Parameters

• x (Component or Manager) – A Component or Manager to graph

• name (str) – A name for the graph (defaults to x’s name)

@return: A directed graph representing x’s Component sturcture. @rtype: str

circuits.tools.reprhandler(handler)

1.6.6 circuits.web – Web Framework

Circuits Library - Web

circuits.web contains the circuits full stack web server that is HTTP and WSGI compliant.

circuits.web.client – Client

Events

class circuits.web.client.Request(method, path, body=None, headers={})
Bases: circuits.core.events.Event

Request Event

This Event is used to initiate a new request.

Parameters

• method (str) – HTTP Method (PUT, GET, POST, DELETE)

• path (str) – Path to resource

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

56 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Components

class circuits.web.client.Client(url, channel=’client’)
Bases: circuits.core.components.BaseComponent

channel = ‘client’

write(data)

close()

connect()

request(method, path, body=None, headers={})

connected

response

Functions

circuits.web.constants – Global Constants

Global Constants

This module implements required shared global constants.

circuits.web.controllers – Controllers

Controllers

This module implements ...

Events

none

Components

class circuits.web.controllers.Controller(*args, **kwargs)
Bases: circuits.web.controllers.BaseController

initializes x; see x.__class__.__doc__ for signature

class circuits.web.controllers.JSONController(*args, **kwargs)
Bases: circuits.web.controllers.BaseController

initializes x; see x.__class__.__doc__ for signature

Functions

circuits.web.controllers.expose(*channels, **config)

circuits.web.controllers.exposeJSON(*channels, **config)

1.6. API Reference 57

circuits Documentation, Release 2.0.1

circuits.web.dispatchers.dispatcher – Default Dispatcher

Events

none

Components

class circuits.web.dispatchers.dispatcher.Dispatcher(**kwargs)
Bases: circuits.core.components.BaseComponent

Functions

none

circuits.web.dispatchers.jsonrpc – JSON-RPC

JSON RPC

This module implements a JSON RPC dispatcher that translates incoming RPC calls over JSON into RPC events.

Events

class circuits.web.dispatchers.jsonrpc.RPC(*args, **kwargs)
Bases: circuits.core.events.Event

RPC Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

58 Chapter 1. Contents

circuits Documentation, Release 2.0.1

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.web.dispatchers.jsonrpc.JSONRPC(path=None, encoding=’utf-8’,
rpc_channel=’*’)

Bases: circuits.core.components.BaseComponent

Functions

none

circuits.web.dispatchers.static – Static

Static

This modStatic implements a Static dispatcher used to serve up static resources and an optional apache-style directory
listing.

Events

none

Components

class circuits.web.dispatchers.static.Static(path=None, docroot=None, de-
faults=(‘index.html’, ‘index.xhtml’), dirlist-
ing=False)

Bases: circuits.core.components.BaseComponent

Functions

none

circuits.web.dispatchers.virtualhosts – Virtual Hosts

VirtualHost

This module implements a virtual host dispatcher that sends requests for configured virtual hosts to different dispatch-
ers.

1.6. API Reference 59

circuits Documentation, Release 2.0.1

Events

none

Components

class circuits.web.dispatchers.virtualhosts.VirtualHosts(domains)
Bases: circuits.core.components.BaseComponent

Forward to anotehr Dispatcher based on the Host header.

This can be useful when running multiple sites within one server. It allows several domains to point
to different parts of a single website structure. For example: - http://www.domain.example -> / -
http://www.domain2.example -> /domain2 - http://www.domain2.example:443 -> /secure

Parameters domains (dict) – a dict of {host header value: virtual prefix} pairs.

The incoming “Host” request header is looked up in this dict, and, if a match is found, the corresponding “virtual
prefix” value will be prepended to the URL path before passing the request onto the next dispatcher.

Note that you often need separate entries for “example.com” and “www.example.com”. In addition, “Host”
headers may contain the port number.

Functions

none

circuits.web.dispatchers.websockets – WebSockets

WebSockets

This module implements a WebSockets dispatcher that handles the WebSockets handshake, upgrades the connection
and translates incoming messages into Message events.

Events

class circuits.web.dispatchers.websockets.Message(*args, **kwargs)
Bases: circuits.core.events.Event

Message Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

60 Chapter 1. Contents

http://www.domain.example
http://www.domain2.example
http://www.domain2.example:443

circuits Documentation, Release 2.0.1

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.web.dispatchers.websockets.WebSockets(path=None, wschannel=’ws’)
Bases: circuits.core.components.BaseComponent

Functions

none

circuits.web.dispatchers.xmlrpc – XML-RPC

XML RPC

This module implements a XML RPC dispatcher that translates incoming RPC calls over XML into RPC events.

Events

class circuits.web.dispatchers.xmlrpc.RPC(*args, **kwargs)
Bases: circuits.core.events.Event

RPC Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

1.6. API Reference 61

circuits Documentation, Release 2.0.1

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.web.dispatchers.xmlrpc.XMLRPC(path=None, encoding=’utf-8’,
rpc_channel=’*’)

Bases: circuits.core.components.BaseComponent

Functions

none

circuits.web.errors – Errors

Errors

This module implements a set of standard HTTP Errors.

Events

class circuits.web.errors.Forbidden(request, response, code=None, **kwargs)
Bases: circuits.web.errors.HTTPError

class circuits.web.errors.NotFound(request, response, code=None, **kwargs)
Bases: circuits.web.errors.HTTPError

class circuits.web.errors.Redirect(request, response, urls, code=None)
Bases: circuits.web.errors.HTTPError

62 Chapter 1. Contents

circuits Documentation, Release 2.0.1

class circuits.web.errors.Unauthorized(request, response, code=None, **kwargs)
Bases: circuits.web.errors.HTTPError

Components

none

Functions

none

circuits.web.events – Events

Events

class circuits.web.events.WebEvent(*args, **kwargs)
Bases: circuits.core.events.Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

1.6. API Reference 63

circuits Documentation, Release 2.0.1

class circuits.web.events.Request(*args, **kwargs)
Bases: circuits.web.events.WebEvent

Request(WebEvent) -> Request WebEvent

args: request, response

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

classmethod create(name, *args, **kwargs)
All classes derived dynamically from Request are LiteralEvents.

class circuits.web.events.Response(*args, **kwargs)
Bases: circuits.web.events.WebEvent

Response(WebEvent) -> Response WebEvent

args: request, response

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

64 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.web.events.Stream(*args, **kwargs)
Bases: circuits.web.events.WebEvent

Stream(WebEvent) -> Stream WebEvent

args: request, response

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

1.6. API Reference 65

circuits Documentation, Release 2.0.1

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

none

Functions

none

circuits.web.exceptions – Exceptions

Exceptions

This module implements a set of standard HTTP Errors as Python Exceptions.

Note: This code is mostly borrowed from werkzeug and adapted for circuits.web

Exceptions

exception circuits.web.exceptions.HTTPException(description=None, traceback=None)
Bases: exceptions.Exception

Baseclass for all HTTP exceptions. This exception can be called by WSGI applications to render a default error
page or you can catch the subclasses of it independently and render nicer error messages.

exception circuits.web.exceptions.BadGateway(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

502 Bad Gateway

If you do proxying in your application you should return this status code if you received an invalid response
from the upstream server it accessed in attempting to fulfill the request.

exception circuits.web.exceptions.BadRequest(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

400 Bad Request

Raise if the browser sends something to the application the application or server cannot handle.

exception circuits.web.exceptions.Forbidden(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

403 Forbidden

Raise if the user doesn’t have the permission for the requested resource but was authenticated.

66 Chapter 1. Contents

circuits Documentation, Release 2.0.1

exception circuits.web.exceptions.Gone(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

410 Gone

Raise if a resource existed previously and went away without new location.

exception circuits.web.exceptions.InternalServerError(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

500 Internal Server Error

Raise if an internal server error occurred. This is a good fallback if an unknown error occurred in the dispatcher.

exception circuits.web.exceptions.LengthRequired(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

411 Length Required

Raise if the browser submitted data but no Content-Length header which is required for the kind of pro-
cessing the server does.

exception circuits.web.exceptions.MethodNotAllowed(method, description=None)
Bases: circuits.web.exceptions.HTTPException

405 Method Not Allowed

Raise if the server used a method the resource does not handle. For example POST if the resource is view only.
Especially useful for REST.

The first argument for this exception should be a list of allowed methods. Strictly speaking the response would
be invalid if you don’t provide valid methods in the header which you can do with that list.

exception circuits.web.exceptions.NotAcceptable(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

406 Not Acceptable

Raise if the server can’t return any content conforming to the Accept headers of the client.

exception circuits.web.exceptions.NotFound(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

404 Not Found

Raise if a resource does not exist and never existed.

exception circuits.web.exceptions.NotImplemented(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

501 Not Implemented

Raise if the application does not support the action requested by the browser.

exception circuits.web.exceptions.PreconditionFailed(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

412 Precondition Failed

Status code used in combination with If-Match, If-None-Match, or If-Unmodified-Since.

exception circuits.web.exceptions.Redirect(urls, status=None)
Bases: circuits.web.exceptions.HTTPException

1.6. API Reference 67

circuits Documentation, Release 2.0.1

exception circuits.web.exceptions.RequestEntityTooLarge(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

413 Request Entity Too Large

The status code one should return if the data submitted exceeded a given limit.

exception circuits.web.exceptions.RequestTimeout(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

408 Request Timeout

Raise to signalize a timeout.

exception circuits.web.exceptions.RequestURITooLarge(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

414 Request URI Too Large

Like 413 but for too long URLs.

exception circuits.web.exceptions.ServiceUnavailable(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

503 Service Unavailable

Status code you should return if a service is temporarily unavailable.

exception circuits.web.exceptions.Unauthorized(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

401 Unauthorized

Raise if the user is not authorized. Also used if you want to use HTTP basic auth.

exception circuits.web.exceptions.UnicodeError(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

raised by the request functions if they were unable to decode the incoming data properly.

exception circuits.web.exceptions.UnsupportedMediaType(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

415 Unsupported Media Type

The status code returned if the server is unable to handle the media type the client transmitted.

Events

none

Components

none

Functions

none

68 Chapter 1. Contents

circuits Documentation, Release 2.0.1

circuits.web.headers – Headers

Headers Support

This module implements support for parsing and handling headers.

Events

none

Classes

class circuits.web.headers.Headers(headers=[])
Bases: dict

Manage a collection of HTTP response headers

has_key(name)
Return true if the message contains the header.

get_all(name)
Return a list of all the values for the named field.

These will be sorted in the order they appeared in the original header list or were added to this instance,
and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. If
no fields exist with the given name, returns an empty list.

get(name, default=None)
Get the first header value for ‘name’, or return ‘default’

keys()
Return a list of all the header field names.

These will be sorted in the order they appeared in the original header list, or were added to this instance,
and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list.

values()
Return a list of all header values.

These will be sorted in the order they appeared in the original header list, or were added to this instance,
and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list.

items()
Get all the header fields and values.

These will be sorted in the order they were in the original header list, or were added to this instance, and
may contain duplicates. Any fields deleted and re-inserted are always appended to the header list.

setdefault(name, value)
Return first matching header value for ‘name’, or ‘value’

If there is no header named ‘name’, add a new header with name ‘name’ and value ‘value’.

add_header(_name, _value, **_params)
Extended header setting.

_name is the header field to add. keyword arguments can be used to set additional parameters for the
header field, with underscores converted to dashes. Normally the parameter will be added as key=”value”
unless value is None, in which case only the key will be added.

1.6. API Reference 69

circuits Documentation, Release 2.0.1

Example:

h.add_header(‘content-disposition’, ‘attachment’, filename=’bud.gif’)

Note that unlike the corresponding ‘email.Message’ method, this does not handle ‘(charset, language,
value)’ tuples: all values must be strings or None.

elements(key)
Return a list of HeaderElements for the given header (or None).

class circuits.web.headers.HeaderElement(value, params=None)
Bases: object

An element (with parameters) from an HTTP header’s element list.

static parse(elementstr)
Transform ‘token;key=val’ to (‘token’, {‘key’: ‘val’}).

classmethod from_str(elementstr)
Construct an instance from a string of the form ‘token;key=val’.

class circuits.web.headers.AcceptElement(value, params=None)
Bases: circuits.web.headers.HeaderElement

An element (with parameters) from an Accept* header’s element list.

AcceptElement objects are comparable; the more-preferred object will be “less than” the less-preferred object.
They are also therefore sortable; if you sort a list of AcceptElement objects, they will be listed in priority order;
the most preferred value will be first. Yes, it should have been the other way around, but it’s too late to fix now.

qvalue
The qvalue, or priority, of this value.

Components

none

Functions

circuits.web.headers.header_elements(fieldname, fieldvalue)
Return a HeaderElement list from a comma-separated header str.

circuits.web.headers.parse_headers(data)

circuits.web.http – HTTP Protocol

Hyper Text Transfer Protocol

This module implements the Hyper Text Transfer Protocol or commonly known as HTTP.

Events

none

70 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Components

class circuits.web.http.HTTP(encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

HTTP Protocol Component

Implements the HTTP server protocol and parses and processes incoming HTTP messages creating and sending
an appropriate response.

Functions

none

circuits.web.loggers – Loggers

Logger Component

This module implements Logger Components.

Events

none

Components

class circuits.web.loggers.Logger(file=None, logger=None, **kwargs)
Bases: circuits.core.components.BaseComponent

Functions

circuits.web.loggers.formattime()

circuits.web.main – circuits.web

Main

circutis.web Web Server and Testing Tool.

Shipped application with static and directory index support suitable for quickly serving up simple web pages.

circuits.web.servers – Servers

Web Servers

This module implements the several Web Server components.

Events

none

1.6. API Reference 71

circuits Documentation, Release 2.0.1

Components

class circuits.web.servers.BaseServer(bind, encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

Create a Base Web Server

Create a Base Web Server (HTTP) bound to the IP Address / Port or UNIX Socket specified by the ‘bind’
parameter.

Variables server – Reference to underlying Server Component

Parameters bind (Instance of int, list, tuple or str) – IP Address / Port or UNIX Socket to bind to.

The ‘bind’ parameter is quite flexible with what valid values it accepts.

If an int is passed, a TCPServer will be created. The Server will be bound to the Port given by the ‘bind’
argument and the bound interface will default (normally to “0.0.0.0”).

If a list or tuple is passed, a TCPServer will be created. The Server will be bound to the Port given by the 2nd
item in the ‘bind’ argument and the bound interface will be the 1st item.

If a str is passed and it contains the ‘:’ character, this is assumed to be a request to bind to an IP Address / Port.
A TCpServer will thus be created and the IP Address and Port will be determined by splitting the string given
by the ‘bind’ argument.

Otherwise if a str is passed and it does not contain the ‘:’ character, a file path is assumed and a UNIXServer is
created and bound to the file given by the ‘bind’ argument.

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.web.servers.Server(bind, **kwargs)
Bases: circuits.web.servers.BaseServer

Create a Web Server

Create a Web Server (HTTP) complete with the default Dispatcher to parse requests and posted form data
dispatching to appropriate Controller(s).

See: circuits.web.servers.BaseServer

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

Functions

none

circuits.web.sessions – Sessions

Session Components

This module implements Session Components that can be used to store and access persistent information.

Events

none

72 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Components

class circuits.web.sessions.Sessions(name=’circuits.session’, *args, **kwargs)
Bases: circuits.core.components.Component

Functions

none

circuits.web.tools – Tools

Tools

This module implements tools used throughout circuits.web. These tools can also be used within Controlelrs and
request handlers.

Events

none

Components

none

Functions

circuits.web.tools.basic_auth(request, response, realm, users, encrypt=None)
Perform Basic Authentication

If auth fails, returns an Unauthorized error with a basic authentication header.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable returning
a dict.

• encrypt (callable) – Callable used to encrypt the password returned from the user-agent. if
None it defaults to a md5 encryption.

circuits.web.tools.check_auth(request, response, realm, users, encrypt=None)
Check Authentication

If an authorization header contains credentials, return True, else False.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable returning
a dict.

• encrypt (callable) – Callable used to encrypt the password returned from the user-agent. if
None it defaults to a md5 encryption.

1.6. API Reference 73

circuits Documentation, Release 2.0.1

circuits.web.tools.digest_auth(request, response, realm, users)
Perform Digest Authentication

If auth fails, raise 401 with a digest authentication header.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable returning
a dict.

circuits.web.tools.expires(request, response, secs=0, force=False)
Tool for influencing cache mechanisms using the ‘Expires’ header.

‘secs’ must be either an int or a datetime.timedelta, and indicates the number of seconds between response.time
and when the response should expire. The ‘Expires’ header will be set to (response.time + secs).

If ‘secs’ is zero, the ‘Expires’ header is set one year in the past, and the following “cache prevention” headers
are also set: - ‘Pragma’: ‘no-cache’ - ‘Cache-Control’: ‘no-cache, must-revalidate’

If ‘force’ is False (the default), the following headers are checked: ‘Etag’, ‘Last-Modified’, ‘Age’, ‘Expires’. If
any are already present, none of the above response headers are set.

circuits.web.tools.gzip(response, level=4, mime_types=[’text/html’, ‘text/plain’])
Try to gzip the response body if Content-Type in mime_types.

response.headers[’Content-Type’] must be set to one of the values in the mime_types arg before calling this
function.

No compression is performed if any of the following hold:

• The client sends no Accept-Encoding request header

• No ‘gzip’ or ‘x-gzip’ is present in the Accept-Encoding header

• No ‘gzip’ or ‘x-gzip’ with a qvalue > 0 is present

• The ‘identity’ value is given with a qvalue > 0.

circuits.web.tools.serve_download(request, response, path, name=None)
Serve ‘path’ as an application/x-download attachment.

circuits.web.tools.serve_file(request, response, path, type=None, disposition=None,
name=None)

Set status, headers, and body in order to serve the given file.

The Content-Type header will be set to the type arg, if provided. If not provided, the Content-Type will be
guessed by the file extension of the ‘path’ argument.

If disposition is not None, the Content-Disposition header will be set to “<disposition>; filename=<name>”. If
name is None, it will be set to the basename of path. If disposition is None, no Content-Disposition header will
be written.

circuits.web.tools.validate_etags(request, response, autotags=False)
Validate the current ETag against If-Match, If-None-Match headers.

If autotags is True, an ETag response-header value will be provided from an MD5 hash of the response body
(unless some other code has already provided an ETag header). If False (the default), the ETag will not be
automatic.

WARNING: the autotags feature is not designed for URL’s which allow methods other than GET. For ex-
ample, if a POST to the same URL returns no content, the automatic ETag will be incorrect, breaking a
fundamental use for entity tags in a possibly destructive fashion. Likewise, if you raise 304 Not Modified,

74 Chapter 1. Contents

circuits Documentation, Release 2.0.1

the response body will be empty, the ETag hash will be incorrect, and your application will break. See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24

circuits.web.tools.validate_since(request, response)
Validate the current Last-Modified against If-Modified-Since headers.

If no code has set the Last-Modified response header, then no validation will be performed.

circuits.web.utils – Utilities

Utilities

This module implements utility functions.

Events

none

Components

none

Functions

circuits.web.utils.compress(body, compress_level)
Compress ‘body’ at the given compress_level.

circuits.web.utils.dictform(form)

circuits.web.utils.get_ranges(headervalue, content_length)
Return a list of (start, stop) indices from a Range header, or None.

Each (start, stop) tuple will be composed of two ints, which are suitable for use in a slicing operation. That is,
the header “Range: bytes=3-6”, if applied against a Python string, is requesting resource[3:7]. This function
will return the list [(3, 7)].

If this function returns an empty list, you should return HTTP 416.

circuits.web.utils.parse_body(request, response, params)

circuits.web.utils.parse_qs(query_string)→ dict
Build a params dictionary from a query_string. If keep_blank_values is True (the default), keep values that are
blank.

circuits.web.utils.url(request, path=’‘, qs=’‘, script_name=None, base=None, relative=None)
Create an absolute URL for the given path.

If ‘path’ starts with a slash (‘/’), this will return

• (base + script_name + path + qs).

If it does not start with a slash, this returns

• (base + script_name [+ request.path] + path + qs).

1.6. API Reference 75

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24

circuits Documentation, Release 2.0.1

If script_name is None, request will be used to find a script_name, if available.

If base is None, request.base will be used (if available).

Finally, note that this function can be used to obtain an absolute URL for the current request path (minus
the querystring) by passing no args. If you call url(qs=request.qs), you should get the original browser URL
(assuming no internal redirections).

If relative is False the output will be an absolute URL (including the scheme, host, vhost, and script_name). If
True, the output will instead be a URL that is relative to the current request path, perhaps including ‘..’ atoms. If
relative is the string ‘server’, the output will instead be a URL that is relative to the server root; i.e., it will start
with a slash.

circuits.web.wrappers – Request/Response Objects

Events

none

Classes

class circuits.web.wrappers.Body
Bases: object

Response Body

class circuits.web.wrappers.Host(ip, port, name=None)
Bases: object

An internet address.

name should be the client’s host name. If not available (because no DNS lookup is performed), the IP address
should be used instead.

class circuits.web.wrappers.Request(sock, method, scheme, path, protocol, qs)
Bases: object

Creates a new Request object to hold information about a request.

Parameters

• sock (socket.socket) – The socket object of the request.

• method (str) – The requsted method.

• scheme (str) – The requsted scheme.

• path (str) – The requsted path.

• protocol (str) – The requsted protocol.

• qs (str) – The query string of the request.

initializes x; see x.__class__.__doc__ for signature

server = None
@cvar: A reference to the underlying server

class circuits.web.wrappers.Response(request, encoding=’utf-8’, code=None, message=None)
Bases: object

Response(sock, request) -> new Response object

76 Chapter 1. Contents

circuits Documentation, Release 2.0.1

A Response object that holds the response to send back to the client. This ensure that the correct data is sent in
the correct order.

initializes x; see x.__class__.__doc__ for signature

Components

none

Functions

circuits.web.wrappers.file_generator(input, chunkSize=4096)

circuits.web.wsgi – WSGI Support

WSGI Components

This module implements WSGI Components.

Events

none

Components

class circuits.web.wsgi.Application
Bases: circuits.core.components.BaseComponent

class circuits.web.wsgi.Gateway(app, path=’/’)
Bases: circuits.core.components.BaseComponent

Functions

none

1.6.7 circuits.app – Application Support

Application Components

Contains various components useful for application development and tasks common to applications.

copyright CopyRight (C) 2004-2012 by James Mills

license MIT (See: LICENSE)

1.6. API Reference 77

circuits Documentation, Release 2.0.1

circuits.app.config – Application Config

Events

class circuits.app.config.Load(*args, **kwargs)
Bases: circuits.app.config.ConfigEvent

Load Config Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.app.config.Save(*args, **kwargs)
Bases: circuits.app.config.ConfigEvent

Save Config Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

78 Chapter 1. Contents

circuits Documentation, Release 2.0.1

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.app.config.Config(filename, defaults=None, channel=’config’)
Bases: circuits.core.components.BaseComponent

Functions

circuits.app.daemon – Application Daemon

Events

class circuits.app.daemon.Daemonize(*args, **kwargs)
Bases: circuits.core.events.Event

Daemonize Event

This event can be fired to notify the Daemon Component to begin the “daemonization” process. This event is
(by default) used automatically by the Daemon Component in its “started” Event Handler (This behavior can be
overridden).

Arguments: None

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

1.6. API Reference 79

circuits Documentation, Release 2.0.1

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.app.daemon.WritePID(*args, **kwargs)
Bases: circuits.core.events.Event

“WritePID Event

This event can be fired to notify the Daemon Component that is should retrive the current process’s id (pid) and
write it out to the configured path in the Daemon Component. This event (by default) is used automatically by
the Daemon Component after the Daemonize.

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

80 Chapter 1. Contents

circuits Documentation, Release 2.0.1

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.app.daemon.Daemon(pidfile, path=’/’, stdin=None, stdout=None, stderr=None, chan-
nel=’daemon’)

Bases: circuits.core.components.BaseComponent

Daemon Component

Parameters

• pidfile (str or unicode) – .pid filename

• stdin (str or unicode) – filename to log stdin

• stdout (str or unicode) – filename to log stdout

• stderr (str or unicode) – filename to log stderr

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

Functions

circuits.app.env – Application Environment

Events

class circuits.app.env.Create(*args, **kwargs)
Bases: circuits.app.env.EnvironmentEvent

Create Environment Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

1.6. API Reference 81

circuits Documentation, Release 2.0.1

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

class circuits.app.env.Load(*args, **kwargs)
Bases: circuits.app.env.EnvironmentEvent

Load Environment Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

82 Chapter 1. Contents

circuits Documentation, Release 2.0.1

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.app.env.Environment(path, envname, channel=’env’)
Bases: circuits.core.components.BaseComponent

Base Environment Component

Creates a new environment component that by default only holds configuration and logger components.

This component can be extended to provide more complex system and application environments.

Functions

circuits.app.log – Application Logging

Events

class circuits.app.log.Log(*args, **kwargs)
Bases: circuits.core.events.Event

Log Event

An Event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers. By default, the name is
the uncameled class name of the event.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results returned
by the handlers invoked for the event.

1.6. API Reference 83

circuits Documentation, Release 2.0.1

• success – if this optional attribute is set to True, an associated event EventSuccess
(original name with “Success” appended) will automatically be fired when all handlers for
the event have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the suc-
cessfully dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event EventComplete
(original name with “Complete” appended) will automatically be fired when all handlers for
the event and all events fired by these handlers (recursively) have been invoked successfully.

• success_channels – the complete event is, by default, delivered to same channels as the
initially dispatched event itself. This may be overridden by specifying an alternative list of
destinations using this attribute.

Components

class circuits.app.log.Logger(filename, name, type, level, channel=’logger’)
Bases: circuits.core.components.BaseComponent

Functions

1.7 Developer Docs

So, you’d like to contribute to circuits ins some way ? Got a bug report ? Having problems running the examples ?
Having problems getting circuits working in your environment / platform ?

Excellent. Here’s what you need to know.

1.7.1 Development Introduction

Here’s how we do things in circuits...

1.7.2 Contributing to circuits

Here’s how you can contribute to circuits

1.7.3 Testing

Here’s how we do testing in circuits:

1.7.4 Reporting Bugs

Found a new bug with circuits ? Great! Here’s how you file a new bug report so that we can fix the problem in a timely
manner:

84 Chapter 1. Contents

circuits Documentation, Release 2.0.1

1.8 ChangeLog

1.8.1 circuits-2.0.1 20121124

• Fixed tests/web/test_main.py which was badly written.

• Fixed a regression test testing the Debugger component

1.8.2 circuits-2.0.0 20121122 (cheetah)

• Fixed circuits.web entry point

• Fixed tools.reprhandler() for compatibility with Python-3.3

• Added *channels support to waitEvent

• Added example of using .call

• Fixed logic around firing the Daemonize event when registering this component during run-time and after start-
up

• Fixed use of reprhandler

• Fixed listening channel for exceptions/errors.

• Fixed channels for Log event.

• Fixed config loading. Fire a Ready event when the Environment is completely ready.

• Added .items(...) method to Config component.

• Added BaseEvent, LiteralEvent, DerivedEvent to the core and circuits name-spaces

• Fixed IRC protocol

• Added has_option to Config component

• Avoid error if user un-registers a component twice.

• Fixed base_url for WebConsole

• Fixed bug with sending Response for a Expect: 100-continue (Closes issue #32)

• Added a new circuits.web test that ensures that large posts > 1024 bytes work

• Updated conf so that doc can be built even if circuits isn’t installed

• Updated reference of guide to howtos

• Updated man headers so that they weren’t all “Components”

• Fixed all web dispatcher tests

• Fixed XMLRPC dispatcher. Must have a higher priority than the “default” dispatcher in order to coexist with it.

• Fixed unit test for failure response from web component (component’s handler must have higher priority than
default dispatcher if default dispatcher exists).

• Added failure test for web controller.

• Fixed JSON dispatcher. Must have a higher priority than the “default” dispatcher in order to coexist with it.

• Fixed vpath traversal. vpath created in reverse (“test_args/1/2/3” became “3/2/1/test_args”).

• Fixed evaluation of the Complete event: exclude events fired by other threads during event processing from the
set of events to be tracked.

1.8. ChangeLog 85

circuits Documentation, Release 2.0.1

• Don’t call tick on components that are waiting to be unregistered.

• Using new PrepareUnregister event to reliably remove sockets from poller.

• Fixes for PrepareUnregister and added test case.

• Added event that informs components about going to be removed from the tree.

• Fixed client request generation (MUST include Host header).

• Fixed channel naming in web.Client to allow several clients (i.e. connections to web sites) to coexist in an
application.

• Prevented uncameling of event names that represent web requests. Handlers can now use the last path segment
unmodified as handled event’s name.

• Fixed the new dispatcher with new tests

• Fixed bug in complete event generation.

• Added optional event signaling the completion of an event and everything that has been caused by it.

• Added the possibility to redirect the success events to other channels.

• Updated documentation to reflect the new “handler suspend” feature.

• Replaced web dispatcher with simpler version

• Added support for x = yield self.callEvent(...)

• Made test_main more reliable

• Removed old BaseManager from playing with GreenletManager. Fixed test_manager_repr

• Fixed the exceptions being thrown for test_eval, but the test still fails

• Added a new failing test - evaluation of promised values

• Removed superfluous .value in test_longwait

• Added support for alllowing future handlers to have a “special” event parameter just like ordinary handlers.

• Fixed test_success

• Fixed test_removeHandler

• Added support for firing Done() and Success() after all done executing.

• Fixed callEvent

• Added 2 failing tests for yield

• Implemented promises which we detect for in circuits.web in cases where an event handler yields. Also only
fire _success events after an event is well and truly finished (in the case of yielding event handlers)

• Fixed a bug with value not being set

• Fixed Issue #26

• Added capability of waiting for a specific event name on a specific channel.

• Fixed bug guarding against tasks already removed.

• Implemented Component.init() support whereby one can define an alternative init() without needing to remem-
ber to call super(...)

• Fixed Python 3 compatibility with Unicode strings

• Added 99bottles as an example of concurrency. See: http://wiki.python.org/moin/Concurrency/99Bottles

86 Chapter 1. Contents

http://wiki.python.org/moin/Concurrency/99Bottles

circuits Documentation, Release 2.0.1

• Removed old-style channel targeting

• Fixed and tested UDP forwarding

• Simplified udpclient example

• Implemented new version of port forwarded. TCP tested.

• Fixed Read events for UDPServer by setting .notify to True.

• Restructured the only How To Guide - Building a Simple Server

• Renamed _get_request_handler to just find_handler

• Removed channels attribute from WebEvents (fix for issue #29).

• Added Eclipse configuration files.

• Fixed uses of deprecated syntax in app.config

• Modified the defaults for channels. Set channels to event.channels, otherwise self.channel defaulting to *

• Fixed uses of deprecated syntax in env

• Fixed a bug with the Redirect event/error in circuits.web where it didn’t handle Unicode strings

• fixed the web dispatcher

• Fixed test_poller_reuse test by using the now findtype() utility function

• fixed and adds tests for the web dispatcher

• Moved parseBody out into circuits.web.utils. Other code cleanup

• Added a test for a bug with the dispatcher mehere found.

• Removed itercmp() function. Added findtype() findchannel() and used better variable names. findcmp is an alias
of findtype.

• Implemented optional singleton support for components

• Removed the circuits.web routes dispatcher as there are no tests for this and Routes dispatcher is broken - re
implement at a later stage

• Removal of End feedback event

• Fixed web/test_value.py

• Fixed web futures test

• Simplified and fixed a lot of issues the circuits.bench

• Fixed circuits.web’s exceptions tests and handling of exceptions.

• Fixed a potential bug with circuits.web.wsgi.Application.

• Modified Manager to only assign a handler return value if it is not None.

• Fixed *_success and *_failure events fire on *event.channels so they go to the right place as
expected. Fixed Issue #21

• Removed event equality test and related tests. Seems rather useless and inconsistently used

• Fixed test_gzip circuits.web test. We no longer have a Started event feedback so have to use a filter

• Fixed a corner case where one might be trying to compare an event object with a non-event object

• Fixed the event handling for circuits.web WebSockets Component by separating out the WebSockets handling
from the HTTP handling (WebSocketsMediator).

1.8. ChangeLog 87

circuits Documentation, Release 2.0.1

• Fixed use of Value notification in circuits.web for requests.

• Fixed a bunch of examples and tests using deprecated features.

• Fixed the notify io driver and removed Debugger() from test_notify.

• Added man pages for circuits.bench, circuits.sniff and circuits.web

• Wrapped UNIX-specific calls in try/except

• Tidied up examples and removed unused imports

• removed use of coverage module in daemon test

• removed use of coverage module in signals test

• updated .push calls to .fire calls

• Fixed some deprecations warnings

• Added support for multiple webserver with different channels + tests for it

• Added support for silently ignoring errors when writing to stderr from debugger

• Added requirements.txt file containing requirements for building docs on readthedocs.org

• Added link to Read the Docs for circuits

• Updated doc message for success event

• Fixed interrupt handler to allow ^C to be used to quit sample keyecho app

• Removed deprecated modules and functions that were deprecated 1.6

• Deleted old style event success/failure notifiers

• Fixed handling of components being added/removed when looking for ticks

• Fixed bug with net.Server .host and .port attributes.

• Deprecated __tick__. Event handlers can now be specified as tick functions.

• Fixed handler priority inheritance to make sure we get the results in the right harder

• Fixed missing import of sys in circuits.io

1.8.3 circuits-1.6 (oceans) - 20110626

• Added Python 3 support

• 80% Code Coverage

• Added optional greenlet support adding two new primitives. .waitEvent(...) and .callEvent(...).

• Added an example WebSockets server using circuits.web

• Added support for specifying a Poll instance to use when using the @future decorator to create “future”
event handlers.

• Added add_section, has_section and set methods to app.config.Config Component.

• Added support for running test suite with distutils python setup.py test.

• Added a _on_signal event handler on the BaseEnvironment Component so that environments can be
reloaded by listening to SIGHUP signals.

• Added support for using absolute paths in app.env.Environment.

• Added support in circuits.web HTTP protocol to limit the no. of header fragments. This prevents OOM exploits.

88 Chapter 1. Contents

circuits Documentation, Release 2.0.1

• Added a ticks limit to waitEvent

• Added deprecation warnings for .push .add and .remove methods

• NEW Loader Component in circuits.core for simple plugin support.

• NEW app.env and app.config modules including a new app.startup modules integrating a common
startup for applications.

• NEW KQueue poller

• Fixed issue 17

• Renamed circuits.web.main module to circuits.web.__main__ so that python -m
circuits.web just works.

• Fixed Server.host and Server.port properties in circuits.net.sockets.

• Fixed issue 10

• Fixed app.Daemon Component to correctly open the stderr file.

• Fixed triggering of Success events.

• Fixed duplicate broadcast handler in UDPServer

• Fixed duplicate Disconnect event from being triggered twice on Client socket components.

• Removed dynamic timeout code from Select poller.

• Fixed a bug in the circuits.web HTTP protocol where headers were not being buffered per client.

• Fixes a missing Event Closed() not being triggered for UDPServer.

• Make underlying UDPServer socket reusable by setting SO_REUSEADDR

• Fixes Server socket being discarded twice on close + disconnect

• Socket.write now expects bytes (bytes for python3 and str for python2)

• Better handling of encoding in HTTP Component (allow non utf-8 encoding)

• Always encode HTTP headers in utf-8

• Fixes error after getting socket.ERRCONNREFUSED

• Allows TCPClient to bind to a specific port

• Improved docs

• Handles closing of UDPServer socket when no client is connected

• Adds an un-register handler for components

• Allows utils.kill to work from a different thread

• Fixes bug when handling “*” in channels and targets

• Fixes a bug that could occur when un-registering components

• Fixes for CPU usage problems when using circuits with no I/O pollers and using a Timer for timed events

1.8. ChangeLog 89

https://bitbucket.org/prologic/circuits/issue/17/
https://bitbucket.org/prologic/circuits/issue/10/

circuits Documentation, Release 2.0.1

1.9 Users

1.9.1 Applications written in circuits

• SahrisWiki <http://sahriswiki.org> a Wiki / CMS / Blogging Engine.

• kdb <http://bitbucket.org/prologic/kdb/> a pluggable IRC Bot Framework.

1.9.2 Applications integrating circuits

• realXtend <http://realxtend.org/> Next generation virtual worlds viewer; Naali, for Python components.
Worked on by Toni Alatalo and Petri Aura at Playsign <http://www.playsign.net/> in collaboration with other
realXtend developers.

• PriceWaterHouseCoopers <http://www.pwc.com/> TAMS Report Generator <http://www.tams.com.au>‘ writ-
ten by James Mills and Michael Anton.

• Mangahelpers <http://mangahelpers.com/> Profiler for checking our webpages generation times, SQL and
cache queries times, project page on <https://launchpad.net/website-profiler>

1.9.3 Other Users

• MIT Media Lab, <http://media.mit.edu/> Uses circuits for several internal prototypes

1.10 Contributors

circuits was originally designed, written and primarily maintained by James Mills (http://prologic.shortcircuit.net.au/).

The following users and developers have contributed to circuits:

• Alessio Deiana

• Dariusz Suchojad

• Tim Miller

• Holger Krekel

• Justin Giorgi

• Edwin Marshall

• Alex Mayfield

• Toni Alatalo

• Michael Lipp

Anyone not listed here (apologies as this list is taken directly from Mercurial’s churn command and output). We
appreciate any and all contributions to circuits.

90 Chapter 1. Contents

http://www.tams.com.au
https://launchpad.net/website-profiler
http://prologic.shortcircuit.net.au/

circuits Documentation, Release 2.0.1

1.11 Frequently Asked Questions

1.12 Glossary

VCS Version Control System, what you use for versioning your source code

1.13 Users

1.13.1 Applications written in circuits

• SahrisWiki <http://sahriswiki.org> a Wiki / CMS / Blogging Engine.

• kdb <http://bitbucket.org/prologic/kdb/> a pluggable IRC Bot Framework.

1.13.2 Applications integrating circuits

• realXtend <http://realxtend.org/> Next generation virtual worlds viewer; Naali, for Python components.
Worked on by Toni Alatalo and Petri Aura at Playsign <http://www.playsign.net/> in collaboration with other
realXtend developers.

• PriceWaterHouseCoopers <http://www.pwc.com/> TAMS Report Generator <http://www.tams.com.au>‘ writ-
ten by James Mills and Michael Anton.

• Mangahelpers <http://mangahelpers.com/> Profiler for checking our webpages generation times, SQL and
cache queries times, project page on <https://launchpad.net/website-profiler>

1.13.3 Other Users

• MIT Media Lab, <http://media.mit.edu/> Uses circuits for several internal prototypes

1.11. Frequently Asked Questions 91

http://www.tams.com.au
https://launchpad.net/website-profiler

circuits Documentation, Release 2.0.1

92 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• Index

• modindex

• search

• Glossary

93

circuits Documentation, Release 2.0.1

94 Chapter 2. Indices and tables

PYTHON MODULE INDEX

c
circuits.app, ??
circuits.app.config, ??
circuits.app.daemon, ??
circuits.app.env, ??
circuits.app.log, ??
circuits.core, ??
circuits.core.components, ??
circuits.core.debugger, ??
circuits.core.events, ??
circuits.core.futures, ??
circuits.core.handlers, ??
circuits.core.loader, ??
circuits.core.manager, ??
circuits.core.pollers, ??
circuits.core.pools, ??
circuits.core.timers, ??
circuits.core.utils, ??
circuits.core.values, ??
circuits.core.workers, ??
circuits.io, ??
circuits.io.events, ??
circuits.io.file, ??
circuits.io.notify, ??
circuits.io.serial, ??
circuits.net, ??
circuits.net.protocols, ??
circuits.net.protocols.http, ??
circuits.net.protocols.irc, ??
circuits.net.protocols.line, ??
circuits.net.sockets, ??
circuits.node, ??
circuits.node.client, ??
circuits.node.events, ??
circuits.node.node, ??
circuits.node.server, ??
circuits.node.utils, ??
circuits.tools, ??
circuits.web, ??
circuits.web.client, ??
circuits.web.constants, ??

circuits.web.controllers, ??
circuits.web.dispatchers.dispatcher, ??
circuits.web.dispatchers.jsonrpc, ??
circuits.web.dispatchers.static, ??
circuits.web.dispatchers.virtualhosts,

??
circuits.web.dispatchers.websockets, ??
circuits.web.dispatchers.xmlrpc, ??
circuits.web.errors, ??
circuits.web.events, ??
circuits.web.exceptions, ??
circuits.web.headers, ??
circuits.web.http, ??
circuits.web.loggers, ??
circuits.web.main, ??
circuits.web.servers, ??
circuits.web.sessions, ??
circuits.web.tools, ??
circuits.web.utils, ??
circuits.web.wrappers, ??
circuits.web.wsgi, ??

95

