
circuits Documentation
Release 3.0

James Mills

July 13, 2017

Contents

1 About 3

2 Documentation 7

3 Indices and tables 141

Python Module Index 143

i

ii

circuits Documentation, Release 3.0

Release 3.0

Date July 13, 2017

Contents 1

circuits Documentation, Release 3.0

2 Contents

CHAPTER 1

About

circuits is a Lightweight Event driven and Asynchronous Application Framework for the Python Programming
Language with a strong Component Architecture.

circuits also includes a lightweight, high performance and scalable HTTP/WSGI compliant web server as well as
various I/O and Networking components.

• Visit the Project Website

• Read the Docs

• Download it from the Downloads Page

Examples

Hello

1 #!/usr/bin/env python
2

3 """circuits Hello World"""
4

5 from circuits import Component, Event
6

7

8 class hello(Event):
9 """hello Event"""

10

11

12 class App(Component):
13

14 def hello(self):
15 """Hello Event Handler"""
16

17 print("Hello World!")

3

http://www.python.org/
http://www.python.org/
http://circuitsframework.com/
http://circuits.readthedocs.org/en/latest/
https://bitbucket.org/circuits/circuits/downloads

circuits Documentation, Release 3.0

18

19 def started(self, component):
20 """Started Event Handler
21

22 This is fired internally when your application starts up and can be used to
23 trigger events that only occur once during startup.
24 """
25

26 self.fire(hello()) # Fire hello Event
27

28 raise SystemExit(0) # Terminate the Application
29

30 App().run()

Download Source Code: hello.py:

Echo Server

1 #!/usr/bin/env python
2

3 """Simple TCP Echo Server
4

5 This example shows how you can create a simple TCP Server (an Echo Service)
6 utilizing the builtin Socket Components that the circuits library ships with.
7 """
8

9 from circuits import handler, Debugger
10 from circuits.net.sockets import TCPServer
11

12

13 class EchoServer(TCPServer):
14

15 @handler("read")
16 def on_read(self, sock, data):
17 """Read Event Handler
18

19 This is fired by the underlying Socket Component when there has been
20 new data read from the connected client.
21

22 ..note :: By simply returning, client/server socket components listen
23 to ValueChagned events (feedback) to determine if a handler
24 returned some data and fires a subsequent Write event with
25 the value returned.
26 """
27

28 return data
29

30 # Start and "run" the system.
31 # Bind to port 0.0.0.0:9000
32 app = EchoServer(9000)
33 Debugger().register(app)
34 app.run()

Download Source Code: echoserver.py:

4 Chapter 1. About

circuits Documentation, Release 3.0

Hello Web

1 #!/usr/bin/env python
2

3 from circuits.web import Server, Controller
4

5

6 class Root(Controller):
7

8 def index(self):
9 """Index Request Handler

10

11 Controller(s) expose implicitly methods as request handlers.
12 Request Handlers can still be customized by using the ``@expose``
13 decorator. For example exposing as a different path.
14 """
15

16 return "Hello World!"
17

18 app = Server(("0.0.0.0", 9000))
19 Root().register(app)
20 app.run()

Download Source Code: helloweb.py:

More examples...

Features

• event driven

• concurrency support

• component architecture

• asynchronous I/O components

• no required external dependencies

• full featured web framework (circuits.web)

• coroutine based synchronization primitives

Requirements

• circuits has no dependencies beyond the Python Standard Library.

Supported Platforms

• Linux, FreeBSD, Mac OS X, Windows

• Python 2.6, 2.7, 3.2, 3.3, 3.4

• pypy 2.0, 2.1, 2.2

1.2. Features 5

https://bitbucket.org/circuits/circuits/src/tip/examples/
http://docs.python.org/library/

circuits Documentation, Release 3.0

Installation

The simplest and recommended way to install circuits is with pip. You may install the latest stable release from PyPI
with pip:

> pip install circuits

If you do not have pip, you may use easy_install:

> easy_install circuits

Alternatively, you may download the source package from the PyPi Page or the Downloads Page extract it and install
using:

> python setup.py install

Note: You can install the development version via pip install circuits==dev.

License

circuits is licensed under the MIT License.

Feedback

We welcome any questions or feedback about bugs and suggestions on how to improve circuits. Let us know what you
think about circuits. @pythoncircuits.

Do you have suggestions for improvement? Then please Create an Issue with details of what you would like to see.
I’ll take a look at it and work with you to either incorporate the idea or find a better solution.

Community

There is also a small community of circuits enthusiasts that you may find on the #circuits IRC Channel on the FreeNode
IRC Network and the Mailing List.

6 Chapter 1. About

http://pypi.python.org/pypi/circuits
https://bitbucket.org/circuits/circuits/downloads
https://bitbucket.org/circuits/circuits/get/tip.tar.gz#egg=circuits
http://www.opensource.org/licenses/mit-license.php
http://twitter.com/pythoncircuits
https://bitbucket.org/circuits/circuits/issue/new
http://webchat.freenode.net/?randomnick=1&channels=circuits&uio=d4
http://freenode.net
http://freenode.net
http://groups.google.com/group/circuits-users

CHAPTER 2

Documentation

Getting Started

Quick Start Guide

The easiest way to download and install circuits is to use the pip command:

$ pip install circuits

Now that you have successfully downloaded and installed circuits, let’s test that circuits is properly installed and
working.

First, let’s check the installed version:

>>> import circuits
>>> print circuits.__version__

This should output:

Try some of the examples in the examples/ directory shipped with the distribution.

Have fun :)

Downloading

Latest Stable Release

The latest stable releases can be downloaded from the Downloads page (specifically the Tags tab).

Latest Development Source Code

We use Mercurial for source control and code sharing.

7

http://pypi.python.org/pypi/pip
http://bitbucket.org/circuits/circuits/downloads/
http://mercurial.selenic.com/

circuits Documentation, Release 3.0

The latest development branch can be cloned using the following command:

$ hg clone https://bitbucket.org/circuits/circuits/

For further instructions on how to use Mercurial, please refer to the Mercurial Book.

Installing

Installing from a Source Package

If you have downloaded a source archive, this applies to you.

$ python setup.py install

For other installation options see:

$ python setup.py --help install

Installing from the Development Repository

If you have cloned the source code repository, this applies to you.

If you have cloned the development repository, it is recommended that you use setuptools and use the following
command:

$ python setup.py develop

This will allow you to regularly update your copy of the circuits development repository by simply performing the
following in the circuits working directory:

$ hg pull -u

Note: You do not need to reinstall if you have installed with setuptools via the circuits repository and used setuptools
to install in “develop” mode.

Requirements and Dependencies

• circuits has no required dependencies beyond the Python Standard Library.

• Python: >= 2.6 or pypy >= 2.0

Supported Platforms Linux, FreeBSD, Mac OS X, Windows

Supported Python Versions 2.6, 2.7, 3.2, 3.3

Supported pypy Versions 2.0

Other Optional Dependencies

These dependencies are not strictly required and only add additional features.

• pydot – For rendering component graphs of an application.

8 Chapter 2. Documentation

http://mercurial.selenic.com/wiki/MercurialBook
http://docs.python.org/library/
http://pypi.python.org/pypi/pydot/

circuits Documentation, Release 3.0

• pyinotify – For asynchronous file system event notifications and the circuits.io.notify module.

circuits Tutorials

Tutorial

Overview

Welcome to the circuits tutorial. This 5-minute tutorial will guide you through the basic concepts of circuits. The
goal is to introduce new concepts incrementally with walk-through examples that you can try out! By the time you’ve
finished, you should have a good basic understanding of circuits, how it feels and where to go from there.

The Component

First up, let’s show how you can use the Component and run it in a very simple application.

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5 Component().run()

Download 001.py

Okay so that’s pretty boring as it doesn’t do very much! But that’s okay... Read on!

Let’s try to create our own custom Component called MyComponent. This is done using normal Python subclassing.

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5

6 class MyComponent(Component):
7 """My Component"""
8

9 MyComponent().run()

Download 002.py

Okay, so this still isn’t very useful! But at least we can create custom components with the behavior we want.

Let’s move on to something more interesting...

Note: Component(s) in circuits are what sets circuits apart from other Asynchronous or Concurrent Application
Frameworks. Components(s) are used as building blocks from simple behaviors to complex ones (composition of
simpler components to form more complex ones).

Event Handlers

Let’s now extend our little example to say “Hello World!” when it’s started.

2.2. circuits Tutorials 9

http://pypi.python.org/pypi/pyinotify

circuits Documentation, Release 3.0

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5

6 class MyComponent(Component):
7

8 def started(self, *args):
9 print("Hello World!")

10

11 MyComponent().run()

Download 003.py

Here we’ve created a simple Event Handler that listens for the started Event.

Note: Methods defined in a custom subclassed Component are automatically turned into Event Handlers. The
only exception to this are methods prefixed with an underscore (_).

Note: If you do not want this automatic behavior, inherit from BaseComponent instead which means you will
have to use the ~circuits.core.handlers.handler decorator to define your Event Handlers.

Running this we get:

Hello World!

Alright! We have something slightly more useful! Whoohoo it says hello!

Note: Press ^C (CTRL + C) to exit.

Registering Components

So now that we’ve learned how to use a Component, create a custom Component and create simple Event Handlers,
let’s try something a bit more complex by creating a complex component made up of two simpler ones.

Note: We call this Component Composition which is the very essence of the circuits Application Framework.

Let’s create two components:

• Bob

• Fred

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5

6 class Bob(Component):
7

8 def started(self, *args):

10 Chapter 2. Documentation

circuits Documentation, Release 3.0

9 print("Hello I'm Bob!")
10

11

12 class Fred(Component):
13

14 def started(self, *args):
15 print("Hello I'm Fred!")
16

17 (Bob() + Fred()).run()

Download 004.py

Notice the way we register the two components Bob and Fred together ? Don’t worry if this doesn’t make sense right
now. Think of it as putting two components together and plugging them into a circuit board.

Running this example produces the following result:

Hello I'm Bob!
Hello I'm Fred!

Cool! We have two components that each do something and print a simple message on the screen!

Complex Components

Now, what if we wanted to create a Complex Component? Let’s say we wanted to create a new Component made up
of two other smaller components?

We can do this by simply registering components to a Complex Component during initialization.

Note: This is also called Component Composition and avoids the classical Diamond problem of Multiple Inheri-
tance. In circuits we do not use Multiple Inheritance to create Complex Components made up of two or more base
classes of components, we instead compose them together via registration.

1 #!/usr/bin/env python
2

3 from circuits import Component
4 from circuits.tools import graph
5

6

7 class Pound(Component):
8

9 def __init__(self):
10 super(Pound, self).__init__()
11

12 self.bob = Bob().register(self)
13 self.fred = Fred().register(self)
14

15 def started(self, *args):
16 print(graph(self.root))
17

18

19 class Bob(Component):
20

21 def started(self, *args):
22 print("Hello I'm Bob!")
23

2.2. circuits Tutorials 11

http://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

circuits Documentation, Release 3.0

24

25 class Fred(Component):
26

27 def started(self, *args):
28 print("Hello I'm Fred!")
29

30 Pound().run()

Download 005.py

So now Pound is a Component that consists of two other components registered to it: Bob and Fred

The output of this is identical to the previous:

* <Pound/* 3391:MainThread (queued=0, channels=1, handlers=3) [R]>

* <Bob/* 3391:MainThread (queued=0, channels=1, handlers=1) [S]>

* <Fred/* 3391:MainThread (queued=0, channels=1, handlers=1) [S]>
Hello I'm Bob!
Hello I'm Fred!

The only difference is that Bob and Fred are now part of a more Complex Component called Pound. This can be
illustrated by the following diagram:

Pound-1344

Bob-9b0c Fred-e98a

Note: The extra lines in the above output are an ASCII representation of the above graph (produced by pydot +
graphviz).

Cool :-)

Component Inheritance

Since circuits is a framework written for the Python Programming Language it naturally inherits properties of Object
Orientated Programming (OOP) – such as inheritance.

So let’s take our Bob and Fred components and create a Base Component called Dog and modify our two dogs (Bob
and Fred) to subclass this.

1 #!/usr/bin/env python
2

12 Chapter 2. Documentation

http://www.python.org/

circuits Documentation, Release 3.0

3 from circuits import Component, Event
4

5

6 class woof(Event):
7 """woof Event"""
8

9

10 class Pound(Component):
11

12 def __init__(self):
13 super(Pound, self).__init__()
14

15 self.bob = Bob().register(self)
16 self.fred = Fred().register(self)
17

18 def started(self, *args):
19 self.fire(woof())
20

21

22 class Dog(Component):
23

24 def woof(self):
25 print("Woof! I'm %s!" % self.name)
26

27

28 class Bob(Dog):
29 """Bob"""
30

31

32 class Fred(Dog):
33 """Fred"""
34

35 Pound().run()

Download 006.py

Now let’s try to run this and see what happens:

Woof! I'm Bob!
Woof! I'm Fred!

So both dogs barked! Hmmm

Component Channels

What if we only want one of our dogs to bark? How do we do this without causing the other one to bark as well?

Easy! Use a separate channel like so:

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5

6 class woof(Event):
7 """woof Event"""
8

9

2.2. circuits Tutorials 13

circuits Documentation, Release 3.0

10 class Pound(Component):
11

12 def __init__(self):
13 super(Pound, self).__init__()
14

15 self.bob = Bob().register(self)
16 self.fred = Fred().register(self)
17

18 def started(self, *args):
19 self.fire(woof(), self.bob)
20

21

22 class Dog(Component):
23

24 def woof(self):
25 print("Woof! I'm %s!" % self.name)
26

27

28 class Bob(Dog):
29 """Bob"""
30

31 channel = "bob"
32

33

34 class Fred(Dog):
35 """Fred"""
36

37 channel = "fred"
38

39 Pound().run()

Download 007.py

Note: Events can be fired with either the .fire(...) or .fireEvent(...) method.

If you run this, you’ll get:

Woof! I'm Bob!

Event Objects

So far in our tutorial we have been defining an Event Handler for a builtin Event called started. What if we wanted
to define our own Event Handlers and our own Events? You’ve already seen how easy it is to create a new Event
Handler by simply defining a normal Python method on a Component.

Defining your own Events helps with documentation and testing and makes things a little easier.

Example:

class MyEvent(Event):
"""MyEvent"""

So here’s our example where we’ll define a new Event called Bark and make our Dog fire a Bark event when our
application starts up.

14 Chapter 2. Documentation

circuits Documentation, Release 3.0

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5

6 class bark(Event):
7 """bark Event"""
8

9

10 class Pound(Component):
11

12 def __init__(self):
13 super(Pound, self).__init__()
14

15 self.bob = Bob().register(self)
16 self.fred = Fred().register(self)
17

18

19 class Dog(Component):
20

21 def started(self, *args):
22 self.fire(bark())
23

24 def bark(self):
25 print("Woof! I'm %s!" % self.name)
26

27

28 class Bob(Dog):
29 """Bob"""
30

31 channel = "bob"
32

33

34 class Fred(Dog):
35 """Fred"""
36

37 channel = "fred"
38

39 Pound().run()

Download 008.py

If you run this, you’ll get:

Woof! I'm Bob!
Woof! I'm Fred!

The Debugger

Lastly...

Asynchronous programming has many advantages but can be a little harder to write and follow. A silently caught
exception in an Event Handler, or an Event that never gets fired, or any number of other weird things can cause your
application to fail and leave you scratching your head.

Fortunately circuits comes with a Debugger Component to help you keep track of what’s going on in your applica-
tion, and allows you to tell what your application is doing.

2.2. circuits Tutorials 15

circuits Documentation, Release 3.0

Let’s say that we defined out bark Event Handler in our Dog Component as follows:

def bark(self):
print("Woof! I'm %s!" % name)

Now clearly there is no such variable as name in the local scope.

For reference here’s the entire example...

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5

6 class bark(Event):
7 """bark Event"""
8

9

10 class Pound(Component):
11

12 def __init__(self):
13 super(Pound, self).__init__()
14

15 self.bob = Bob().register(self)
16 self.fred = Fred().register(self)
17

18

19 class Dog(Component):
20

21 def started(self, *args):
22 self.fire(bark())
23

24 def bark(self):
25 print("Woof! I'm %s!" % name) # noqa
26

27

28 class Bob(Dog):
29 """Bob"""
30

31 channel = "bob"
32

33

34 class Fred(Dog):
35 """Fred"""
36

37 channel = "fred"
38

39 Pound().run()

Download 009.py

If you run this, you’ll get:

That’s right! You get nothing! Why? Well in circuits any error or exception that occurs in a running application
is automatically caught and dealt with in a way that lets your application “keep on going”. Crashing is unwanted
behavior in a system so we expect to be able to recover from horrible situations.

SO what do we do? Well that’s easy. circuits comes with a Debugger that lets you log all events as well as all errors
so you can quickly and easily discover which Event is causing a problem and which Event Handler to look at.

16 Chapter 2. Documentation

circuits Documentation, Release 3.0

If you change Line 34 of our example...

From:

class Fred(Dog):

To:

from circuits import Debugger

(Pound() + Debugger()).run()

Then run this, you’ll get the following:

<Registered[bob:registered] [<Bob/bob 3191:MainThread (queued=0, channels=2,
→˓handlers=2) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>]
→˓{}>
<Registered[fred:registered] [<Fred/fred 3191:MainThread (queued=0, channels=2,
→˓handlers=2) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>]
→˓{}>
<Registered[*:registered] [<Debugger/* 3191:MainThread (queued=0, channels=1,
→˓handlers=1) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>]
→˓{}>
<Started[*:started] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>,
→˓ None] {}>
<Bark[bob:bark] [] {}>
<Bark[fred:bark] [] {}>
<Error[*:exception] [<type 'exceptions.NameError'>, NameError("global name 'name' is
→˓not defined",), [' File "/home/prologic/work/circuits/circuits/core/manager.py",
→˓line 459, in __handleEvent\n retval = handler(*eargs, **ekwargs)\n', ' File
→˓"source/tutorial/009.py", line 22, in bark\n print("Woof! I\'m %s!" % name)\n'],
→˓<bound method ?.bark of <Bob/bob 3191:MainThread (queued=0, channels=2, handlers=2)
→˓[S]>>] {}>
ERROR <listener on ('bark',) {target='bob', priority=0.0}> (<type 'exceptions.
→˓NameError'>): global name 'name' is not defined
File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __

→˓handleEvent
retval = handler(*eargs, **ekwargs)
File "source/tutorial/009.py", line 22, in bark
print("Woof! I'm %s!" % name)

<Error[*:exception] [<type 'exceptions.NameError'>, NameError("global name 'name' is
→˓not defined",), [' File "/home/prologic/work/circuits/circuits/core/manager.py",
→˓line 459, in __handleEvent\n retval = handler(*eargs, **ekwargs)\n', ' File
→˓"source/tutorial/009.py", line 22, in bark\n print("Woof! I\'m %s!" % name)\n'],
→˓<bound method ?.bark of <Fred/fred 3191:MainThread (queued=0, channels=2,
→˓handlers=2) [S]>>] {}>
ERROR <listener on ('bark',) {target='fred', priority=0.0}> (<type 'exceptions.
→˓NameError'>): global name 'name' is not defined
File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __

→˓handleEvent
retval = handler(*eargs, **ekwargs)

File "source/tutorial/009.py", line 22, in bark
print("Woof! I'm %s!" % name)

^C<Signal[*:signal] [2, <frame object at 0x808e8ec>] {}>
<Stopped[*:stopped] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [S]>
→˓] {}>
<Stopped[*:stopped] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [S]>
→˓] {}>

2.2. circuits Tutorials 17

circuits Documentation, Release 3.0

You’ll notice whereas there was no output before there is now a pretty detailed output with the Debugger added to
the application. Looking through the output, we find that the application does indeed start correctly, but when we fire
our Bark Event it coughs up two exceptions, one for each of our dogs (Bob and Fred).

From the error we can tell where the error is and roughly where to look in the code.

Note: You’ll notice many other events that are displayed in the above output. These are all default events that circuits
has builtin which your application can respond to. Each builtin Event has a special meaning with relation to the state
of the application at that point.

See: circuits.core.events for detailed documentation regarding these events.

The correct code for the bark Event Handler should be:

def bark(self):
print("Woof! I'm %s!" % self.name)

Running again with our correction results in the expected output:

Woof! I'm Bob!
Woof! I'm Fred!

That’s it folks!

Hopefully this gives you a feel of what circuits is all about and an easy tutorial on some of the basic concepts. As
you’re no doubt itching to get started on your next circuits project, here’s some recommended reading:

• ../faq

• ../api/index

Telnet Tutorial

Overview

Welcome to our 2nd circuits tutorial. This tutorial is going to walk you through the telnet Example showing you how
to various parts of the circuits component library for building a simple TCP client that also accepts user input.

Be sure you have circuits installed before you start:

pip install circuits

See: Installing

Components

You will need the following components:

1. The TCPClient Component

2. The File Component

3. The Component Component

All these are available in the circuits library so there is nothing for you to do. Click on each to read more about them.

18 Chapter 2. Documentation

https://bitbucket.org/circuits/circuits/src/tip/examples/telnet.py

circuits Documentation, Release 3.0

Design

TCPClient

Select

Telnet

File

The above graph is the overall design of our Telnet application. What’s shown here is a relationship of how the
components fit together and the overall flow of events.

For example:

1. Connect to remote TCP Server.

2. Read input from User.

3. Write input from User to connected Socket.

4. Wait for data from connected Socket and display.

Note: The Select Component shown is required by our application for Asynchronous I/O polling however we
do not need to explicitly use it as it is automatically imported and registered simply by utilizing the TCPClient
Component.

Implementation

Without further delay here’s the code:

1 #!/usr/bin/env python
2

3 import sys
4

5

6 from circuits.io import File
7 from circuits import handler, Component
8 from circuits.net.sockets import TCPClient
9 from circuits.net.events import connect, write

2.2. circuits Tutorials 19

circuits Documentation, Release 3.0

10

11

12 class Telnet(Component):
13

14 channel = "telnet"
15

16 def init(self, host, port):
17 self.host = host
18 self.port = port
19

20 TCPClient(channel=self.channel).register(self)
21 File(sys.stdin, channel="stdin").register(self)
22

23 def ready(self, socket):
24 self.fire(connect(self.host, self.port))
25

26 def read(self, data):
27 print(data.strip())
28

29 @handler("read", channel="stdin")
30 def read_user_input(self, data):
31 self.fire(write(data))
32

33

34 host = sys.argv[1]
35 port = int(sys.argv[2])
36

37 Telnet(host, port).run()

Download telnet.py

Discussion

Some important things to note...

1. Notice that we defined a channel for out Telnet Component?

This is so that the events of TCPClient and File don’t collide. Both of these components share a very similar
interface in terms of the events they listen to.

class Telnet(Component):

channel = "telnet"

2. Notice as well that in defining a channel for our Telnet Component we’ve also “registered” the
TCPClient Component so that it has the same channel as our Telnet Component.

Why? We want our Telnet Component to receive all of the events of the TCPClient Component.

TCPClient(channel=self.channel).register(self)

3. In addition to our TCPClient Component being registered with the same channel as our Telnet Compo-
nent we can also see that we have registered a File Component however we have chosen a different channel
here called stdin.

Why? We don’t want the events from TCPClient and subsequently our Telnet Component to collide with
the events from File.

20 Chapter 2. Documentation

circuits Documentation, Release 3.0

So we setup a Component for reading user input by using the File Component and attaching an event handler
to our Telnet Component but listening to events from our stdin channel.

File(sys.stdin, channel="stdin").register(self)

@handler("read", channel="stdin")
def read_user_input(self, data):

self.fire(write(data))

Here is what the event flow would look like if you were to register the Debugger to the Telnet Component.

from circuits import Debugger
(Telnet(host, port) + Debugger()).run()

$ python telnet.py 10.0.0.2 9000
<registered[telnet] (<TCPClient/telnet 21995:MainThread (queued=0) [S]>, <Telnet/
→˓telnet 21995:MainThread (queued=4) [R]>)>
<registered[stdin] (<File/stdin 21995:MainThread (queued=0) [S]>, <Telnet/telnet
→˓21995:MainThread (queued=5) [R]>)>
<registered[*] (<Debugger/* 21995:MainThread (queued=0) [S]>, <Telnet/telnet
→˓21995:MainThread (queued=5) [R]>)>
<started[telnet] (<Telnet/telnet 21995:MainThread (queued=4) [R]>)>
<registered[select] (<Select/select 21995:MainThread (queued=0) [S]>, <TCPClient/
→˓telnet 21995:MainThread (queued=0) [S]>)>
<ready[telnet] (<TCPClient/telnet 21995:MainThread (queued=0) [S]>)>
<ready[stdin] (<File/stdin 21995:MainThread (queued=0) [S]>)>
<connect[telnet] ('10.0.0.2', 9000)>
<_open[stdin] ()>
<connected[telnet] ('10.0.0.2', 9000)>
<opened[stdin] ('<stdin>', 'r')>
Hello World!
<_read[stdin] (<open file '<stdin>', mode 'r' at 0x7f32ff5ab0c0>)>
<read[stdin] ('Hello World!\n')>
<write[telnet] ('Hello World!\n')>
<_write[telnet] (<socket._socketobject object at 0x11f7f30>)>
<_read[telnet] (<socket._socketobject object at 0x11f7f30>)>
<read[telnet] ('Hello World!\n')>
Hello World!
^C<signal[telnet] (2, <frame object at 0x12b0a10>)>
<stopped[telnet] (<Telnet/telnet 21995:MainThread (queued=0) [S]>)>
<close[telnet] ()>
<close[stdin] ()>
<disconnected[telnet] ()>
<closed[stdin] ()>

Testing

To try this example out, download a copy of the echoserver Example and copy and paste the full source code of the
Telnet example above into a file called telnet.py.

In one terminal run:

$ python echoserver.py

In a second terminal run:

2.2. circuits Tutorials 21

https://bitbucket.org/circuits/circuits/src/tip/echoserver.py

circuits Documentation, Release 3.0

$ python telnet.py localhost 9000

Have fun!

For more examples see examples.

See also:

• Frequently Asked Questions

• API Documentation

circuits User Manual

Core Library

Components

The architectural concept of circuits is to encapsulate system functionality into discrete manageable and reusable units,
called Components, that interact by sending and handling events that flow throughout the system.

Technically, a circuits Component is a Python class that inherits (directly or indirectly) from BaseComponent.

Components can be sub-classed like any other normal Python class, however components can also be composed of
other components and it is natural to do so. These are called Complex Components. An example of a Complex
Component within the circuits library is the circuits.web.servers.Server Component which is comprised
of:

• circuits.net.sockets.TCPServer

• circuits.web.servers.BaseServer

• circuits.web.http.HTTP

• circuits.web.dispatchers.dispatcher.Dispatcher

Note: There is no class or other technical means to mark a component as a complex component. Rather, all com-
ponent instances in a circuits based application belong to some component tree (there may be several), with Complex
Components being a subtree within that structure.

A Component is attached to the tree by registering with the parent and detached by unregistering itself. See methods:

• register()

• unregister()

Component Registration

To register a component use the register() method.

1 from circuits import Component
2

3

4 class Foo(Component):
5 """Foo Component"""
6

22 Chapter 2. Documentation

https://bitbucket.org/circuits/circuits/src/tip/examples

circuits Documentation, Release 3.0

7

8 class App(Component):
9 """App Component"""

10

11 def init(self):
12 Foo().register(self)
13

14

15 app = App()
16 debugger = Debugger().register(app)
17 app.run()

Unregistering Components

Components are unregistered via the unregister() method.

debugger.unregister()

Note: You need a reference to the component you wish to unregister. The register() method returns you a
reference of the component that was registered.

Convenient Shorthand Form

After a while when your application becomes rather large and complex with many components and component regis-
trations you will find it cumbersome to type .register(blah).

circuits has several convenient methods for component registration and deregistration that work in an identical fashion
to their register() and unregister() counterparts.

These convenience methods follow normal mathematical operator precedence rules and are implemented by overload-
ing the Python __add__, __iadd__, __sub__ and __isub__.

The mapping is as follow:

• register() map to + and +=

• unregister() map to> - and -=

For example the above could have been written as:

1 from circuits import Component
2

3

4 class Foo(Component):
5 """Foo Component"""
6

7

8 class App(Component):
9 """App Component"""

10

11 def init(self):
12 self += Foo()
13

2.3. circuits User Manual 23

circuits Documentation, Release 3.0

14

15 (App() + Debugger()).run()

Implicit Component Registration(s)

Sometimes it’s handy to implicitly register components into another component by simply referencing the other com-
ponent instance as a class attribute of the other.

Example:

>>> from circuits import Component
>>>
>>> class Foo(Component):
... """Foo Component"""
...
>>> class App(Component):
... """App Component"""
...
... foo = Foo()
...
>>> app = App()
>>> app.components
set([<Foo/* 28599:MainThread (queued=0) [S]>])
>>>

The telnet Example does this for example.

Debugger

The core Debugger component is the standard way to debug your circuits applications. It services two purposes:

• Logging events as they flow through the system.

• Logging any exceptions that might occurs in your application.

Usage

Using the Debugger in your application is very straight forward just like any other component in the circuits com-
ponent library. Simply add it to your application and register it somewhere (it doesn’t matter where).

Example:

1 from circuits import Component, Debugger
2

3

4 class App(Component):
5 """Your Application"""
6

7

8 app = Appp()
9 Debugger().register(app)

10 app.run()

24 Chapter 2. Documentation

https://bitbucket.org/circuits/circuits/src/tip/examples/telnet.py

circuits Documentation, Release 3.0

Sample Output(s)

Here are some example outputs that you should expect to see when using the Debugger component in your applica-
tion.

Example Code:

1 from circuits import Event, Component, Debugger
2

3

4 class foo(Event):
5 """foo Event"""
6

7

8 class App(Component):
9

10 def foo(self, x, y):
11 return x + y
12

13

14 app = App() + Debugger()
15 app.start()

Run with:

python -i app.py

Logged Events:

<registered[*] (<Debugger/* 27098:App (queued=0) [S]>, <App/* 27098:App (queued=2)
→˓[R]>)>
<started[*] (<App/* 27098:App (queued=1) [R]>)>
>>> app.fire(foo(1, 2))
<Value () result: False errors: False for <foo[*] (1, 2)>
>>> <foo[*] (1, 2)>

Logged Exceptions:

>>> app.fire(foo())
<Value () result: False errors: False for <foo[*] ()>
>>> <foo[*] ()>
<exception[*] (<type 'exceptions.TypeError'>, TypeError('foo() takes exactly 3
→˓arguments (1 given)',), [' File "/home/prologic/work/circuits/circuits/core/
→˓manager.py", line 561, in _dispatcher\n value = handler(*eargs, **ekwargs)\n']
→˓handler=<bound method App.foo of <App/* 27098:App (queued=1) [R]>>, fevent=<foo[*]
→˓()>)>
ERROR <handler[*.foo] (App.foo)> (<foo[*] ()>) {<type 'exceptions.TypeError'>}:
→˓foo() takes exactly 3 arguments (1 given)
File "/home/prologic/work/circuits/circuits/core/manager.py", line 561, in _

→˓dispatcher
value = handler(*eargs, **ekwargs)

Events

2.3. circuits User Manual 25

circuits Documentation, Release 3.0

Basic usage

Events are objects that contain data (arguments and keyword arguments) about the message being sent to a receiving
component. Events are triggered by using the fire() method of any registered component.

Some events in circuits are fired implicitly by the circuits core like the started event used in the tutorial or explic-
itly by components while handling some other event. Once fired, events are dispatched to the components that are
interested in these events (components whose event handlers match events of interest).

Events are usually fired on one or more channels, allowing components to gather in “interest groups”. This is especially
useful if you want to reuse basic components such as a TCPServer. A TCPServer component fires a read event
for every package of data that it receives. If we did not have support for channels, it would be very difficult to build
two servers in a single process without their read events colliding.

Using channels, we can put one server and all components interested in its events on one channel, and another server
and the components interested in this other server’s events on another channel.

Components are associated with a channel by setting their channel class or instance attribute.

See also:

Component

Besides having a name, events carry additional arbitrary information. This information is passed as arguments or
keyword arguments to the constructor. It is then delivered to the event handler method that must have exactly the
same number of arguments and keyword arguments. Of course, as is usual in Python, you can also pass additional
information by setting attributes of the event object, though this usage pattern is discouraged.

Filtering

Events can be filtered by stopping other event handlers from continuing to process the event.

To do this, simply call the stop() method.

Example:

@handler("foo")
def stop_foo(self, event, *args, **kwargs):

event.stop()

Here any other event handlers also listening to “foo” will not be processed.

Note: It’s important to use priority event handlers here in this case as all event handlers and events run with the same
priority unless explicitly told otherwise.

Changed in version 3.0: In circuits 2.x you declared your event handler to be a filter by using
@handler(filter=True) and returned a True-ish value from the respective event handler to achieve the same
effect. This is no longer the case in circuits 3.x Please use event.stop() as noted above.

Events as result collectors

Apart from delivering information to handlers, event objects may also collect information. If a handler returns some-
thing that is not None, it is stored in the event’s value attribute. If a second (or any subsequent) handler invocation
also returns a value, the values are stored as a list. Note that the value attribute is of type Value and you must access
its property value to access the data stored (collected_information = event.value.value).

26 Chapter 2. Documentation

circuits Documentation, Release 3.0

The collected information can be accessed by handlers in order to find out about any return values from the previously
invoked handlers. More useful though, is the possibility to access the information after all handlers have been invoked.
After all handlers have run successfully (i.e. no handler has thrown an error) circuits may generate an event that
indicates the successful handling. This event has the name of the event just handled with “Success” appended. So if
the event is called Identify then the success event is called IdentifySuccess. Success events aren’t delivered
by default. If you want successful handling to be indicated for an event, you have to set the optional attribute success
of this event to True.

The handler for a success event must be defined with two arguments. When invoked, the first argument is the event just
having been handled successfully and the second argument is (as a convenience) what has been collected in event.
value.value (note that the first argument may not be called event, for an explanation of this restriction as well
as for an explanation why the method is called identify_success see the section on handlers).

1 #!/usr/bin/env python
2

3 from circuits import Component, Debugger, Event
4

5

6 class Identify(Event):
7 """Identify Event"""
8

9 success = True
10

11

12 class Pound(Component):
13

14 def __init__(self):
15 super(Pound, self).__init__()
16

17 Debugger().register(self)
18 Bob().register(self)
19 Fred().register(self)
20

21 def started(self, *args):
22 self.fire(Identify())
23

24 def Identify_success(self, evt, result):
25 if not isinstance(result, list):
26 result = [result]
27 print "In pound:"
28 for name in result:
29 print name
30

31

32 class Dog(Component):
33

34 def Identify(self):
35 return self.__class__.__name__
36

37

38 class Bob(Dog):
39 """Bob"""
40

41

42 class Fred(Dog):
43 """Fred"""
44

45 Pound().run()

2.3. circuits User Manual 27

circuits Documentation, Release 3.0

Download handler_returns.py

Advanced usage

Sometimes it may be necessary to take some action when all state changes triggered by an event are in effect. In this
case it is not sufficient to wait for the completion of all handlers for this particular event. Rather, we also have to wait
until all events that have been fired by those handlers have been processed (and again wait for the events fired by those
events’ handlers, and so on). To support this scenario, circuits can fire a Complete event. The usage is similar to
the previously described success event. Details can be found in the API description of circuits.core.events.
Event.

Handlers

Explicit Event Handlers

Event Handlers are methods of components that are invoked when a matching event is dispatched. These can be
declared explicitly on a BaseComponent or Component or by using the handler() decorator.

1 #!/usr/bin/env python
2

3 from circuits import handler, BaseComponent, Debugger
4

5

6 class MyComponent(BaseComponent):
7

8 def __init__(self):
9 super(MyComponent, self).__init__()

10

11 Debugger().register(self)
12

13 @handler("started", channel="*")
14 def system_started(self, component):
15 print "Start event detected"
16

17 MyComponent().run()

Download handler_annotation.py

The handler decorator on line 14 turned the method system_started into an event handler for the event started.

When defining explicit event handlers in this way, it’s convention to use the following pattern:

@handler("foo")
def print_foobar(self, ...):

print("FooBar!")

This makes reading code clear and concise and obvious to the reader that the method is not part of the class’s public
API (leading underscore as per Python convention) and that it is invoked for events of type SomeEvent.

The optional keyword argument “channel” can be used to attach the handler to a different channel than the compo-
nent’s channel (as specified by the component’s channel attribute).

Handler methods must be declared with arguments and keyword arguments that match the arguments passed to the
event upon its creation. Looking at the API for started you’ll find that the component that has been started is
passed as an argument to its constructor. Therefore, our handler method must declare one argument (Line 14).

28 Chapter 2. Documentation

circuits Documentation, Release 3.0

The handler() decorator accepts other keyword arguments that influence the behavior of the event handler and its
invocation. Details can be found in the API description of handler().

Implicit Event Handlers

To make things easier for the developer when creating many event handlers and thus save on some typing, the
Component can be used and subclassed instead which provides an implicit mechanism for creating event handlers.

Basically every method in the component is automatically and implicitly marked as an event handler with
@handler(<name>) where <name> is the name of each method applied.

The only exceptions are:

• Methods that start with an underscore _.

• Methods already marked explicitly with the handler() decorator.

Example:

#!/usr/bin/env python

from circuits import handler, Component, Event

class hello(Event):
"""hello Event"""

class App(Component):

def _say(self, message):
"""Print the given message

This is a private method as denoted via the prefixed underscore.
This will not be turned into an event handler.
"""

print(message)

def started(self, manager):
self._say("App Started!")
self.fire(hello())
raise SystemExit(0)

@handler("hello")
def print_hello(self):

"""hello Event Handlers

Print "Hello World!" when the ``hello`` Event is received.

As this is already decorated with the ``@handler``
decorator, it will be left as it is and won't get
touched by the implicit event handler creation
mechanisms.
"""

print("Hello World!")

2.3. circuits User Manual 29

circuits Documentation, Release 3.0

@handler(False)
def test(self, *args, **kwargs):

"""A simple test method that does nothing

This will not be turned into an event handlers
because of the ``False`` argument passed to the
``@handler`` decorator. This only makes sense
when subclassing ``Component`` and you want to
have fine grained control over what methods
are not turned into event handlers.
"""

pass

App().run()

Note: You can specify that a method will not be marked as an event handler by passing False as the first argument
to @handler().

Manager

The core Manager class is the base class of all components in circuits. It is what defines the API(s) of all compo-
nents and necessary machinery to run your application smoothly.

Note: It is not recommended to actually use the Manager in your application code unless you know what you’re
doing.

Warning: A Manager does not know how to register itself to other components! It is a manager, not a compo-
nent, however it does form the basis of every component.

Usage

Using the Manager in your application is not really recommended except in some special circumstances where you
want to have a top-level object that you can register things to.

Example:

1 from circuits import Component, Manager
2

3

4 class App(Component):
5 """Your Application"""
6

7

8 manager = Manager()
9 App().register(manager)

10 manager.run()

30 Chapter 2. Documentation

circuits Documentation, Release 3.0

Note: If you think you need a Manager chances are you probably don’t. Use a Component instead.

Values

The core Value class is an internal part of circuits’ Futures and Promises used to fulfill promises of the return value
of an event handler and any associated chains of events and event handlers.

Basically when you fire an event foo() such as:

x = self.fire(foo())

x here is an instance of the Value class which will contain the value returned by the event handler for foo in the
.value property.

Note: There is also getValue() which can be used to also retrieve the underlying value held in the instance of the
Value class but you should not need to use this as the .value property takes care of this for you.

The only other API you may need in your application is the notifywhich can be used to trigger a value_changed
event when the underlying Value of the event handler has changed. In this way you can do something asynchronously
with the event handler’s return value no matter when it finishes.

Example Code:

1 #!/usr/bin/python -i
2

3

4 from circuits import handler, Event, Component, Debugger
5

6

7 class hello(Event):
8 "hello Event"
9

10

11 class test(Event):
12 "test Event"
13

14

15 class App(Component):
16

17 def hello(self):
18 return "Hello World!"
19

20 def test(self):
21 return self.fire(hello())
22

23 @handler("hello_value_changed")
24 def _on_hello_value_changed(self, value):
25 print("hello's return value was: {}".format(value))
26

27

28 app = App()
29 Debugger().register(app)

Example Session:

2.3. circuits User Manual 31

http://en.wikipedia.org/wiki/Futures_and_promises

circuits Documentation, Release 3.0

1 $ python -i ../app.py
2 >>> x = app.fire(test())
3 >>> x.notify = True
4 >>> app.tick()
5 <registered[*] (<Debugger/* 27798:MainThread (queued=0) [S]>, <App/* 27798:MainThread

→˓(queued=1) [S]>)>
6 <test[*] ()>
7 >>> app.tick()
8 <hello[*] ()>
9 >>> app.tick()

10 <test_value_changed[<App/* 27798:MainThread (queued=0) [S]>] (<Value ('Hello World!')
→˓result: True errors: False for <test[*] ()>)>

11 >>> app.tick()
12 >>> x
13 <Value ('Hello World!') result: True errors: False for <test[*] ()>
14 >>> x.value
15 'Hello World!'
16 >>>

The Value.notify attribute can also be set to the name of an event which should be used to fire the
value_changed event to.

If the form x.notify = True used then the event that gets fired is a concatenation of the original event and the
value_changed event. e.g: foo_value_changed.

Note: This is a bit advanced and should only be used by experienced users of the circuits framework. If you simply
want basic synchronization of event handlers it’s recommended that you try the circuits.Component.call()
and circuits.Component.wait() synchronization primitives first.

Miscellaneous

Tools

There are two main tools of interest in circuits. These are:

• circuits.tools.inspect()

• circuits.tools.graph()

These can be found in the circuits.tools module.

Introspecting your Application

The inspect() function is used to help introspect your application by displaying all the channels and events handlers
defined through the system including any additional meta data about them.

Example:

>>> from circuits import Component
>>> class App(Component):
... def foo(self):
... pass
...
>>> app = App()

32 Chapter 2. Documentation

circuits Documentation, Release 3.0

>>> from circuits.tools import inspect
>>> print(inspect(app))
Components: 0

Event Handlers: 3
unregister; 1
<handler[*.unregister] (App._on_unregister)>
foo; 1
<handler[*.foo] (App.foo)>
prepare_unregister_complete; 1
<handler[<instance of App>.prepare_unregister_complete] (App._on_prepare_

→˓unregister_complete)>

Displaying a Visual Representation of your Application

The graph() function is used to help visualize the different components in your application and how they interact
with one another and how they are registered in the system.

In order to get a image from this you must have the following packages installed:

• networkx

• pygraphviz

• matplotlib

You can install the required dependencies via:

pip install matplotlib networkx pygraphviz

Example:

>>> from circuits import Component, Debugger
>>> from circuits.net.events import write
>>> from circuits.net.sockets import TCPServer
>>>
>>> class EchoServer(Component):
... def init(self, host="0.0.0.0", port=8000):
... TCPServer((host, port)).register(self)
... Debugger().register(self)
... def read(self, sock, data):
... self.fire(write(sock, data))
...
>>> server = EchoServer()
>>>
>>> from circuits.tools import graph
>>> print(graph(server))

* <EchoServer/* 784:MainThread (queued=2) [S]>

* <TCPServer/server 784:MainThread (queued=0) [S]>

* <Debugger/* 784:MainThread (queued=0) [S]>

An output image will be saved to your current working directory and by called <name>.png where <name> is
the name of the top-level component in your application of the value you pass to the name= keyword argument of
~circuits.tools.graph.

Example output of telnet Example:

2.3. circuits User Manual 33

http://pypi.python.org/pypi/networkx
http://pypi.python.org/pypi/pygraphviz
http://pypi.python.org/pypi/matplotlib
https://bitbucket.org/circuits/circuits/src/tip/examples/telnet.py

circuits Documentation, Release 3.0

And its DOT Graph:

TCPClient

Select

Telnet

File

34 Chapter 2. Documentation

circuits Documentation, Release 3.0

circuits.web User Manual

Introduction

circuits.web is a set of components for building high performance HTTP/1.1 and WSGI/1.0 compliant web applica-
tions. These components make it easy to rapidly develop rich, scalable web applications with minimal effort.

circuits.web borrows from

• CherryPy

• BaseHTTPServer (Python std. lib)

• wsgiref (Python std. lib)

Getting Started

Just like any application or system built with circuits, a circuits.web application follows the standard Component based
design and structure whereby functionality is encapsulated in components. circuits.web itself is designed and built in
this fashion. For example a circuits.web Server’s structure looks like this:

To illustrate the basic steps, we will demonstrate developing your classical “Hello World!” applications in a web-based
way with circuits.web

To get started, we first import the necessary components:

from circutis.web import Server, Controller

Next we define our first Controller with a single Request Handler defined as our index. We simply return “Hello
World!” as the response for our Request Handler.

class Root(Controller):

def index(self):
return "Hello World!"

This completes our simple web application which will respond with “Hello World!” when anyone accesses it.

Admittedly this is a stupidly simple web application! But circuits.web is very powerful and plays nice with other tools.

Now we need to run the application:

(Server(8000) + Root()).run()

2.4. circuits.web User Manual 35

http://www.cherrypy.org

circuits Documentation, Release 3.0

That’s it! Navigate to: http://127.0.0.1:8000/ and see the result.

Here’s the complete code:

1 from circuits.web import Server, Controller
2

3 class Root(Controller):
4

5 def index(self):
6 return "Hello World!"
7

8 (Server(8000) + Root()).run()

Have fun!

Features

circuits.web is not a Full Stack or High Level web framework, rather it is more closely aligned with CherryPy and
offers enough functionality to make quickly developing web applications easy and as flexible as possible.

circuits.web does not provide high level features such as:

• Templating

• Database access

• Form Validation

• Model View Controller

• Object Relational Mapper

The functionality that circutis.web does provide ensures that circuits.web is fully HTTP/1.1 and WSGI/1.0 compliant
and offers all the essential tools you need to build your web application or website.

To demonstrate each feature, we’re going to use the classical “Hello World!” example as demonstrated earlier in
Getting Started.

Here’s the code again for easy reference:

1 from circuits.web import Server, Controller
2

3

4 class Root(Controller):
5

6 def index(self):
7 return "Hello World!"
8

9

10 (Server(8000) + Root()).run()

Logging

circuits.web’s Logger component allows you to add logging support compatible with Apache log file formats to your
web application.

To use the Logger simply add it to your application:

36 Chapter 2. Documentation

http://127.0.0.1:8000/
http://www.cherrypy.org/

circuits Documentation, Release 3.0

(Server(8000) + Logger() + Root()).run()

Example Log Output:

127.0.0.1 - - [05/Apr/2014:10:13:01] "GET / HTTP/1.1" 200 12 "" "curl/7.35.0"
127.0.0.1 - - [05/Apr/2014:10:13:02] "GET /docs/build/html/index.html HTTP/1.1" 200
→˓22402 "" "curl/7.35.0"

Cookies

Access to cookies are provided through the Request Object which holds data about the request. The attribute
cookie is provided as part of the RequestObject. It is a dict-like object, an instance of Cookie.SimpleCookie
from the python standard library.

To demonstrate “Using Cookies” we’ll write a very simple application that remembers who we are:

If a cookie name is found, display “Hello <name>!”. Otherwise, display “Hello World!” If an argument is given or a
query parameter name is given, store this as the name for the cookie. Here’s how we do it:

1 from circuits.web import Server, Controller
2

3

4 class Root(Controller):
5

6 def index(self, name=None):
7 if name:
8 self.cookie["name"] = name
9 else:

10 name = self.cookie.get("name", None)
11 name = "World!" if name is None else name.value
12

13 return "Hello {0:s}!".format(name)
14

15

16 (Server(8000) + Root()).run()

Note: To access the actual value of a cookie use the .value attribute.

Warning: Cookies can be vulnerable to XSS (Cross Site Scripting) attacks so use them at your own risk. See:
http://en.wikipedia.org/wiki/Cross-site_scripting#Cookie_security

Dispatchers

circuits.web provides several dispatchers in the dispatchers module. Most of these are available directly from the
circuits.web namespace by simply importing the required “dispatcher” from circuits.web.

Example:

from circuits.web import Static

2.4. circuits.web User Manual 37

http://en.wikipedia.org/wiki/Cross-site_scripting#Cookie_security

circuits Documentation, Release 3.0

The most important “dispatcher” is the default Dispatcher used by the circuits.web Server to dispatch incoming
requests onto a channel mapping (remember that circuits is event-driven and uses channels), quite similar to that of
CherryPy or any other web framework that supports object traversal.

Normally you don’t have to worry about any of the details of the default Dispatcher nor do you have to import it
or use it in any way as it’s already included as part of the circuits.web Server Component structure.

Static

The Static “dispatcher” is used for serving static resources/files in your application. To use this, simply add it to
your application. It takes some optional configuration which affects it’s behavior.

The simplest example (as per our Base Example):

(Server(8000) + Static() + Root()).run()

This will serve up files in the current directory as static resources.

Note: This may override your index request handler of your top-most (Root) Controller. As this might be
undesirable and it’s normally common to serve static resources via a different path and even have them stored in a
separate physical file path, you can configure the Static “dispatcher”.

Static files stored in /home/joe/www/:

(Server(8000) + Static(docroot="/home/joe/www/") + Root()).run()

Static files stored in /home/joe/www/ and we want them served up as /static URI(s):

(Server(8000) + Static("/static", docroot="/home/joe/www/") + Root()).run()

Dispatcher

The Dispatcher (the default) is used to dispatch requests and map them onto channels with a similar URL Mapping
as CherryPy’s. A set of “paths” are maintained by the Dispatcher as Controller(s) are registered to the system or
unregistered from it. A channel mapping is found by traversing the set of known paths (Controller(s)) and successively
matching parts of the path (split by /) until a suitable Controller and Request Handler is found. If no Request Handler
is found that matches but there is a “default” Request Handler, it is used.

This Dispatcher also included support for matching against HTTP methods:

• GET

• POST

• PUT

• DELETE.

Here are some examples:

1 class Root(Controller):
2

3 def index(self):
4 return "Hello World!"
5

6 def foo(self, arg1, arg2, arg3):

38 Chapter 2. Documentation

circuits Documentation, Release 3.0

7 return "Foo: %r, %r, %r" % (arg1, arg2, arg3)
8

9 def bar(self, kwarg1="foo", kwarg2="bar"):
10 return "Bar: kwarg1=%r, kwarg2=%r" % (kwarg1, kwarg2)
11

12 def foobar(self, arg1, kwarg1="foo"):
13 return "FooBar: %r, kwarg1=%r" % (arg1, kwarg1)

With the following requests:

http://127.0.0.1:8000/
http://127.0.0.1:8000/foo/1/2/3
http://127.0.0.1:8000/bar?kwarg1=1
http://127.0.0.1:8000/bar?kwarg1=1&kwarg=2
http://127.0.0.1:8000/foobar/1
http://127.0.0.1:8000/foobar/1?kwarg1=1

The following output is produced:

Hello World!
Foo: '1', '2', '3'
Bar: kwargs1='1', kwargs2='bar'
Bar: kwargs1='1', kwargs2='bar'
FooBar: '1', kwargs1='foo'
FooBar: '1', kwargs1='1'

This demonstrates how the Dispatcher handles basic paths and how it handles extra parts of a path as well as the query
string. These are essentially translated into arguments and keyword arguments.

To define a Request Handler that is specifically for the HTTP POST method, simply define a Request Handler like:

1 class Root(Controller):
2

3 def index(self):
4 return "Hello World!"
5

6

7 class Test(Controller):
8

9 channel = "/test"
10

11 def POST(self, *args, **kwargs): #***
12 return "%r %r" % (args, kwargs)

This will handles POST requests to “/test”, which brings us to the final point of creating URL structures in your
application. As seen above to create a sub-structure of Request Handlers (a tree) simply create another Controller
Component giving it a different channel and add it to the system along with your existing Controller(s).

Warning: All public methods defined in your If you don't want something exposed either
subclass from :class:`~BaseController whereby you have to explicitly use expose() or use
@expose(False) to decorate a public method as NOT Exposed or simply prefix the desired method with
an underscore (e.g: def _foo(...):).

2.4. circuits.web User Manual 39

circuits Documentation, Release 3.0

VirtualHosts

The VirtualHosts “dispatcher” allows you to serves up different parts of your application for different “virtual”
hosts.

Consider for example you have the following hosts defined:

localdomain
foo.localdomain
bar.localdomain

You want to display something different on the default domain name “localdomain” and something different for each
of the sub-domains “foo.localdomain” and “bar.localdomain”.

To do this, we use the VirtualHosts “dispatcher”:

1 from circuits.web import Server, Controller, VirtualHosts
2

3

4 class Root(Controller):
5

6 def index(self):
7 return "I am the main vhost"
8

9

10 class Foo(Controller):
11

12 channel = "/foo"
13

14 def index(self):
15 return "I am foo."
16

17

18 class Bar(Controller):
19

20 channel = "/bar"
21

22 def index(self):
23 return "I am bar."
24

25

26 domains = {
27 "foo.localdomain:8000": "foo",
28 "bar.localdomain:8000": "bar",
29 }
30

31

32 (Server(8000) + VirtualHosts(domains) + Root() + Foo() + Bar()).run()

With the following requests:

http://localdomain:8000/
http://foo.localdomain:8000/
http://bar.localdomain:8000/

The following output is produced:

40 Chapter 2. Documentation

circuits Documentation, Release 3.0

I am the main vhost
I am foo.
I am bar.

The argument domains pasted to VirtualHosts’ constructor is a mapping (dict) of: domain -> channel

XMLRPC

The XMLRPC “dispatcher” provides a circuits.web application with the capability of serving up RPC Requests encoded
in XML (XML-RPC).

Without going into too much details (if you’re using any kind of RPC “dispatcher” you should know what you’re
doing...), here is a simple example:

1 from circuits import Component
2 from circuits.web import Server, Logger, XMLRPC
3

4

5 class Test(Component):
6

7 def foo(self, a, b, c):
8 return a, b, c
9

10

11 (Server(8000) + Logger() + XMLRPC() + Test()).run()

Here is a simple interactive session:

>>> import xmlrpclib
>>> xmlrpc = xmlrpclib.ServerProxy("http://127.0.0.1:8000/rpc/")
>>> xmlrpc.foo(1, 2, 3)
[1, 2, 3]
>>>

JSONRPC

The JSONRPC “dispatcher” is Identical in functionality to the XMLRPC “dispatcher”.

Example:

1 from circuits import Component
2 from circuits.web import Server, Logger, JSONRPC
3

4

5 class Test(Component):
6

7 def foo(self, a, b, c):
8 return a, b, c
9

10

11 (Server(8000) + Logger() + JSONRPC() + Test()).run()

Interactive session (requires the ‘jsonrpclib <https://pypi.python.org/pypi/jsonrpc>‘_ library):

2.4. circuits.web User Manual 41

circuits Documentation, Release 3.0

>>> import jsonrpclib
>>> jsonrpc = jsonrpclib.ServerProxy("http://127.0.0.1:8000/rpc/")
>>> jsonrpc.foo(1, 2, 3)
{'result': [1, 2, 3], 'version': '1.1', 'id': 2, 'error': None}
>>>

Caching

circuits.web includes all the usual Cache Control, Expires and ETag caching mechanisms.

For simple expires style caching use the expires() tool from circuits.web.tools.

Example:

1 from circuits.web import Server, Controller
2

3

4 class Root(Controller):
5

6 def index(self):
7 self.expires(3600)
8 return "Hello World!"
9

10

11 (Server(8000) + Root()).run()

For other caching mechanisms and validation please refer to the circuits.web.tools documentation.

See in particular:

• expires()

• validate_since()

Note: In the example above we used self.expires(3600) which is just a convenience method built into
the Controller. The Controller has other such convenience methods such as .uri, .forbidden(), .
redirect(), .notfound(), .serve_file(), .serve_download() and .expires().

These are just wrappers around tools and events.

Compression

circuits.web includes the necessary low-level tools in order to achieve compression. These tools are provided as a set
of functions that can be applied to the response before it is sent to the client.

Here’s how you can create a simple Component that enables compression in your web application or website.

1 from circuits import handler, Component
2

3 from circuits.web.tools import gzip
4 from circuits.web import Server, Controller, Logger
5

6

7 class Gzip(Component):
8

9 @handler("response", priority=1.0)

42 Chapter 2. Documentation

circuits Documentation, Release 3.0

10 def compress_response(self, event, response):
11 event[0] = gzip(response)
12

13

14 class Root(Controller):
15

16 def index(self):
17 return "Hello World!"
18

19

20 (Server(8000) + Gzip() + Root()).run()

Please refer to the documentation for further details:

• tools.gzip()

• utils.compress()

Authentication

circuits.web provides both HTTP Plain and Digest Authentication provided by the functions in circuits.web.
tools:

• tools.basic_auth()

• tools.check_auth()

• tools.digest_auth()

The first 2 arguments are always (as with most circuits.web tools):

• (request, response)

An example demonstrating the use of “Basic Auth”:

1 from circuits.web import Server, Controller
2 from circuits.web.tools import check_auth, basic_auth
3

4

5 class Root(Controller):
6

7 def index(self):
8 realm = "Test"
9 users = {"admin": "admin"}

10 encrypt = str
11

12 if check_auth(self.request, self.response, realm, users, encrypt):
13 return "Hello %s" % self.request.login
14

15 return basic_auth(self.request, self.response, realm, users, encrypt)
16

17

18 (Server(8000) + Root()).run()

For “Digest Auth”:

1 from circuits.web import Server, Controller
2 from circuits.web.tools import check_auth, digest_auth
3

4

2.4. circuits.web User Manual 43

circuits Documentation, Release 3.0

5 class Root(Controller):
6

7 def index(self):
8 realm = "Test"
9 users = {"admin": "admin"}

10 encrypt = str
11

12 if check_auth(self.request, self.response, realm, users, encrypt):
13 return "Hello %s" % self.request.login
14

15 return digest_auth(self.request, self.response, realm, users, encrypt)
16

17

18 (Server(8000) + Root()).run()

Session Handling

Session Handling in circuits.web is very similar to Cookies. A dict-like object called .session is attached to every
Request Object during the life-cycle of that request. Internally a Cookie named circuits.session is set in the response.

Rewriting the Cookie Example to use a session instead:

1 from circuits.web import Server, Controller, Sessions
2

3

4 class Root(Controller):
5

6 def index(self, name=None):
7 if name:
8 self.session["name"] = name
9 else:

10 name = self.session.get("name", "World!")
11

12 return "Hello %s!" % name
13

14

15 (Server(8000) + Sessions() + Root()).run()

Note: The only Session Handling provided is a temporary in-memory based one and will not persist. No future
Session Handling components are planned. For persistent data you should use some kind of Database.

How To Guides

These “How To” guides will steer you in the right direction for common aspects of modern web applications and
website design.

How Do I: Use a Templating Engine

circuits.web tries to stay out of your way as much as possible and doesn’t impose any restrictions on what exter-
nal libraries and tools you can use throughout your web application or website. As such you can use any template
language/engine you wish.

44 Chapter 2. Documentation

circuits Documentation, Release 3.0

Example: Using Mako

This basic example of using the Mako Templating Language. First a TemplateLookup instance is created. Finally a
function called render(name, **d) is created that is used by Request Handlers to render a given template and
apply data to it.

Here is the basic example:

1 #!/usr/bin/env python
2

3 import os
4

5

6 import mako
7 from mako.lookup import TemplateLookup
8

9

10 from circuits.web import Server, Controller
11

12

13 templates = TemplateLookup(
14 directories=[os.path.join(os.path.dirname(__file__), "tpl")],
15 module_directory="/tmp",
16 output_encoding="utf-8"
17)
18

19

20 def render(name, **d): #**
21 try:
22 return templates.get_template(name).render(**d) #**
23 except:
24 return mako.exceptions.html_error_template().render()
25

26

27 class Root(Controller):
28

29 def index(self):
30 return render("index.html")
31

32 def submit(self, firstName, lastName):
33 msg = "Thank you %s %s" % (firstName, lastName)
34 return render("index.html", message=msg)
35

36

37 (Server(8000) + Root()).run()

Other Examples

Other Templating engines will be quite similar to integrate.

2.4. circuits.web User Manual 45

circuits Documentation, Release 3.0

How Do I: Integrate with a Database

Warning: Using databases in an asynchronous framework is problematic because most database implementations
don’t support asynchronous I/O operations.

Generally the solution is to use threading to hand off database operations to a separate thread.

Here are some ways to help integrate databases into your application:

1. Ensure your queries are optimized and do not block for extensive periods of time.

2. Use a library like SQLAlchemy that supports multi-threaded database operations to help prevent your cir-
cuits.web web application from blocking.

3. Optionally take advantage of the Worker component to fire task events wrapping database calls in a thread
or process pool. You can then use the call() and wait() synchronization primitives to help with the control
flow of your requests and responses.

Another way you can help improve performance is by load balancing across multiple backends of your web applica-
tion. Using things like haproxy or nginx for load balancing can really help.

How Do I: Use WebSockets

Since the WebSocketDispatcher id a circuits.web “dispatcher” it’s quite easy to integrate into your web applica-
tion. Here’s a simple trivial example:

1 #!/usr/bin/env python
2

3 from circuits.net.events import write
4 from circuits import Component, Debugger
5 from circuits.web.dispatchers import WebSockets
6 from circuits.web import Controller, Logger, Server, Static
7

8

9 class Echo(Component):
10

11 channel = "wsserver"
12

13 def read(self, sock, data):
14 self.fireEvent(write(sock, "Received: " + data))
15

16

17 class Root(Controller):
18

19 def index(self):
20 return "Hello World!"
21

22

23 app = Server(("0.0.0.0", 8000))
24 Debugger().register(app)
25 Static().register(app)
26 Echo().register(app)
27 Root().register(app)
28 Logger().register(app)
29 WebSockets("/websocket").register(app)
30 app.run()

46 Chapter 2. Documentation

http://www.sqlalchemy.org/
http://haproxy.1wt.eu/
http://nginx.org/en/

circuits Documentation, Release 3.0

See the circuits.web examples.

How do I: Build a Simple Form

circuits.web parses all POST data as a request comes through and creates a dictionary of kwargs (Keyword Arguments)
that are passed to Request Handlers.

Here is a simple example of handling form data:

1 #!/usr/bin/env python
2

3 from circuits.web import Server, Controller
4

5

6 class Root(Controller):
7

8 html = """\
9 <html>

10 <head>
11 <title>Basic Form Handling</title>
12 </head>
13 <body>
14 <h1>Basic Form Handling</h1>
15 <p>
16 Example of using
17 circuits and it's
18 Web Components to build a simple web application that handles
19 some basic form data.
20 </p>
21 <form action="submit" method="POST">
22 <table border="0" rules="none">
23 <tr>
24 <td>First Name:</td>
25 <td><input type="text" name="firstName"></td>
26 </tr>
27 <tr>
28 <td>Last Name:</td>
29 <td><input type="text" name="lastName"></td>
30 </tr>
31 <tr>
32 <td colspan=2" align="center">
33 <input type="submit" value="Submit">
34 </td>
35 </tr>
36 </table>
37 </form>
38 </body>
39 </html>"""
40

41

42 def index(self):
43 return self.html
44

45 def submit(self, firstName, lastName):
46 return "Hello %s %s" % (firstName, lastName)
47

48

49 (Server(8000) + Root()).run(

2.4. circuits.web User Manual 47

https://bitbucket.org/circuits/circuits/src/tip/examples/web

circuits Documentation, Release 3.0

How Do I: Upload a File

You can easily handle File Uploads as well using the same techniques as above. Basically the “name” you give your
<input> tag of type=”file” will get passed as the Keyword Argument to your Request Handler. It has the following
two attributes:

.filename - The name of the uploaded file.

.value - The contents of the uploaded file.

Here’s the code!

1 #!/usr/bin/env python
2

3 from circuits.web import Server, Controller
4

5

6 UPLOAD_FORM = """
7 <html>
8 <head>
9 <title>Upload Form</title>

10 </head>
11 <body>
12 <h1>Upload Form</h1>
13 <form method="POST" action="/" enctype="multipart/form-data">
14 Description: <input type="text" name="desc">

15 <input type="file" name="file">
16 <input type="submit" value="Submit">
17 </form>
18 </body>
19 </html>
20 """
21

22 UPLOADED_FILE = """
23 <html>
24 <head>
25 <title>Uploaded File</title>
26 </head>
27 <body>
28 <h1>Uploaded File</h1>
29 <p>
30 Filename: %s

31 Description: %s
32 </p>
33 <p>File Contents:</p>
34 <pre>
35 %s
36 </pre>
37 </body>
38 </html>
39 """
40

41

42 class Root(Controller):
43

44 def index(self, file=None, desc=""):
45 if file is None:
46 return UPLOAD_FORM
47 else:

48 Chapter 2. Documentation

circuits Documentation, Release 3.0

48 filename = file.filename
49 return UPLOADED_FILE % (file.filename, desc, file.value)
50

51

52 (Server(8000) + Root()).run()

circuits.web automatically handles form and file uploads and gives you access to the uploaded file via arguments to
the request handler after they’ve been processed by the dispatcher.

How Do I: Integrate with WSGI Applications

Integrating with other WSGI Applications is quite easy to do. Simply add in an instance of the Gateway component
into your circuits.web application.

Example:

1 #!/usr/bin/env python
2

3 from circuits.web.wsgi import Gateway
4 from circuits.web import Controller, Server
5

6

7 def foo(environ, start_response):
8 start_response("200 OK", [("Content-Type", "text/plain")])
9 return ["Foo!"]

10

11

12 class Root(Controller):
13 """App Rot"""
14

15 def index(self):
16 return "Hello World!"
17

18

19 app = Server(("0.0.0.0", 10000))
20 Root().register(app)
21 Gateway({"/foo": foo}).register(app)
22 app.run()

The apps argument of the Gateway component takes a key/value pair of path -> callable (a Python dictio-
nary) that maps each URI to a given WSGI callable.

How Do I: Deploy with Apache and mod_wsgi

Here’s how to deploy your new Circuits powered Web Application on Apache using mod_wsgi.

Let’s say you have a Web Hosting account with some provider.

• Your Username is: “joblogs”

• Your URL is: http://example.com/~joeblogs/

• Your Docroot is: /home/joeblogs/www/

2.4. circuits.web User Manual 49

http://example.com/~joeblogs/

circuits Documentation, Release 3.0

Configuring Apache

The first step is to add in the following .htaccess file to tell Apache hat we want any and all requests to http://example.
com/~joeblogs/ to be served up by our circuits.web application.

Created the .htaccess file in your Docroot:

ReWriteEngine On
ReWriteCond %{REQUEST_FILENAME} !-f
ReWriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ /~joeblogs/index.wsgi/$1 [QSA,PT,L]

Running your Application with Apache/mod_wsgi

The get your Web Application working and deployed on Apache using mod_wsgi, you need to make a few changes to
your code. Based on our Basic Hello World example earlier, we modify it to the following:

1 #!/usr/bin/env python
2

3 from circuits.web import Controller
4 from circuits.web.wsgi import Application
5

6

7 class Root(Controller):
8

9 def index(self):
10 return "Hello World!"
11

12

13 application = Application() + Root()

That’s it! To run this, save it as index.wsgi and place it in your Web Root (public-html or www directory) as per the
above guidelines and point your favorite Web Browser to: http://example.com/~joeblogs/

Note: It is recommended that you actually use a reverse proxy setup for deploying circuits.web web application so
that you don’t loose the advantages and functionality of using an event-driven component architecture in your web
apps.

In production you should use a load balance and reverse proxy combination for best performance.

Miscellaneous

Writing Tools

Most of the internal tools used by circuits.web in circuits.web.tools are simply functions that modify the Request or
Response objects in some way or another... We won’t be covering that here... What we will cover is how to build
simple tools that do something to the Request or Response along it’s life-cycle.

Here is a simple example of a tool that uses the pytidylib library to tidy up the HTML output before it gets sent back
to the requesting client.

Code:

50 Chapter 2. Documentation

http://example.com/~joeblogs/
http://example.com/~joeblogs/
http://example.com/~joeblogs/

circuits Documentation, Release 3.0

1 #!/usr/bin/env python
2 from tidylib import tidy_document
3

4 from circuits import Component
5

6 class Tidy(Component):
7

8 channel = "http"
9

10 def response(self, response):
11 document, errors = tidy_document("".join(response.body))
12 response.body = document
13 Usage:
14

15 (Server(8000) + Tidy() + Root()).run()

How it works:

This tool works by intercepting the Response Event on the “response” channel of the “http” target (or Component).
For more information about the life cycle of Request and Response events, their channels and where and how they can
be intercepted to perform various tasks read the Request/Response Life Cycle section.

Writing Dispatchers

In circuits.web writing a custom “dispatcher” is only a matter of writing a Component that listens for incoming Request
events on the “request” channel of the “web” target. The simplest kind of “dispatcher” is one that simply modifies the
request.path in some way. To demonstrate this we’ll illustrate and describe how the !VirtualHosts “dispatcher” works.

VirtualHosts code:

1 class VirtualHosts(Component):
2

3 channel = "web"
4

5 def __init__(self, domains):
6 super(VirtualHosts, self).__init__()
7

8 self.domains = domains
9

10 @handler("request", filter=True, priority=1)
11 def request(self, event, request, response):
12 path = request.path.strip("/")
13

14 header = request.headers.get
15 domain = header("X-Forwarded-Host", header("Host", ""))
16 prefix = self.domains.get(domain, "")
17

18 if prefix:
19 path = _urljoin("/%s/" % prefix, path)
20 request.path = path

The important thing here to note is the Event Handler listening on the appropriate channel and the request.path being
modified appropriately.

You’ll also note that in [source:circuits/web/dispatchers.py] all of the dispatchers have a set priority. These priorities
are defined as:

2.4. circuits.web User Manual 51

circuits Documentation, Release 3.0

$ grin "priority" circuits/web/dispatchers/
circuits/web/dispatchers/dispatcher.py:

92 : @handler("request", filter=True, priority=0.1)
circuits/web/dispatchers/jsonrpc.py:

38 : @handler("request", filter=True, priority=0.2)
circuits/web/dispatchers/static.py:

59 : @handler("request", filter=True, priority=0.9)
circuits/web/dispatchers/virtualhosts.py:

49 : @handler("request", filter=True, priority=1.0)
circuits/web/dispatchers/websockets.py:

53 : @handler("request", filter=True, priority=0.2)
circuits/web/dispatchers/xmlrpc.py:

36 : @handler("request", filter=True, priority=0.2)

in web applications that use multiple dispatchers these priorities set precedences for each “dispatcher” over another in
terms of who’s handling the Request Event before the other.

Note: Some dispatchers are designed to filter the Request Event and prevent it from being processed by other
dispatchers in the system.

API Documentation

circuits package

Subpackages

circuits.app package

Submodules

circuits.app.daemon module

Daemon Component

Component to daemonize a system into the background and detach it from its controlling PTY. Supports PID file
writing, logging stdin, stdout and stderr and changing the current working directory.

class circuits.app.daemon.daemonize(*args, **kwargs)
Bases: circuits.core.events.Event

daemonize Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to

52 Chapter 2. Documentation

circuits Documentation, Release 3.0

as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘daemonize’

class circuits.app.daemon.deletepid(*args, **kwargs)
Bases: circuits.core.events.Event

“deletepid Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

2.5. API Documentation 53

circuits Documentation, Release 3.0

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘deletepid’

class circuits.app.daemon.writepid(*args, **kwargs)
Bases: circuits.core.events.Event

“writepid Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘writepid’

class circuits.app.daemon.Daemon(*args, **kwargs)
Bases: circuits.core.components.Component

Daemon Component

Parameters

• pidfile (str or unicode) – .pid filename

54 Chapter 2. Documentation

circuits Documentation, Release 3.0

• stdin (str or unicode) – filename to log stdin

• stdout (str or unicode) – filename to log stdout

• stderr (str or unicode) – filename to log stderr

initializes x; see x.__class__.__doc__ for signature

channel = ‘daemon’

init(pidfile, path=’/’, stdin=None, stdout=None, stderr=None, channel=’daemon’)

deletepid()

writepid()

daemonize()

registered(component, manager)

on_started(component)

Module contents

Application Components

Contains various components useful for application development and tasks common to applications.

copyright CopyRight (C) 2004-2013 by James Mills

license MIT (See: LICENSE)

class circuits.app.Daemon(*args, **kwargs)
Bases: circuits.core.components.Component

Daemon Component

Parameters

• pidfile (str or unicode) – .pid filename

• stdin (str or unicode) – filename to log stdin

• stdout (str or unicode) – filename to log stdout

• stderr (str or unicode) – filename to log stderr

initializes x; see x.__class__.__doc__ for signature

channel = ‘daemon’

daemonize()

deletepid()

init(pidfile, path=’/’, stdin=None, stdout=None, stderr=None, channel=’daemon’)

on_started(component)

registered(component, manager)

writepid()

2.5. API Documentation 55

circuits Documentation, Release 3.0

circuits.core package

Submodules

circuits.core.bridge module

Bridge

The Bridge Component is used for inter-process communications between processes. Bridge is used internally when
a Component is started in “process mode” via circuits.core.manager.start(). Typically a Pipe is used as
the socket transport between two sides of a Bridge (there must be a :class:‘~Bridge‘ instnace on both sides).

class circuits.core.bridge.Bridge(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = ‘bridge’

ignore = [’registered’, ‘unregistered’, ‘started’, ‘stopped’, ‘error’, ‘value_changed’, ‘generate_events’, ‘read’, ‘write’, ‘close’, ‘connected’, ‘connect’, ‘disconnect’, ‘disconnected’, ‘_read’, ‘_write’]

init(socket, channel=’bridge’)

send(event)

circuits.core.components module

This module defines the BaseComponent and its subclass Component.

class circuits.core.components.prepare_unregister(*args, **kwargs)
Bases: circuits.core.events.Event

This event is fired when a component is about to be unregistered from the component tree. Unregistering a
component actually detaches the complete subtree that the unregistered component is the root of. Components
that need to know if they are removed from the main tree (e.g. because they maintain relationships to other
components in the tree) handle this event, check if the component being unregistered is one of their ancestors
and act accordingly.

Parameters component – the component that will be unregistered

complete = True

in_subtree(component)
Convenience method that checks if the given component is in the subtree that is about to be detached.

name = ‘prepare_unregister’

class circuits.core.components.BaseComponent(*args, **kwargs)
Bases: circuits.core.manager.Manager

This is the base class for all components in a circuits based application. Components can (and should, except
for root components) be registered with a parent component.

BaseComponents can declare methods as event handlers using the handler decoration (see circuits.core.
handlers.handler()). The handlers are invoked for matching events from the component’s channel (spec-
ified as the component’s channel attribute).

BaseComponents inherit from circuits.core.manager.Manager. This provides components with the
circuits.core.manager.Manager.fireEvent()method that can be used to fire events as the result
of some computation.

56 Chapter 2. Documentation

circuits Documentation, Release 3.0

Apart from the fireEvent() method, the Manager nature is important for root components that are started
or run.

Variables channel – a component can be associated with a specific channel by setting this at-
tribute. This should either be done by specifying a class attribute channel in the derived class
or by passing a keyword parameter channel=”...” to __init__. If specified, the component’s
handlers receive events on the specified channel only, and events fired by the component will
be sent on the specified channel (this behavior may be overridden, see Event, fireEvent()
and handler()). By default, the channel attribute is set to “*”, meaning that events are fired
on all channels and received from all channels.

initializes x; see x.__class__.__doc__ for signature

channel = ‘*’

register(parent)
Inserts this component in the component tree as a child of the given parent node.

Parameters parent (Manager) – the parent component after registration has completed.

This method fires a Registered event to inform other components in the tree about the new member.

unregister()
Removes this component from the component tree.

Removing a component from the component tree is a two stage process. First, the component is marked
as to be removed, which prevents it from receiving further events, and a prepare_unregister event
is fired. This allows other components to e.g. release references to the component to be removed before it
is actually removed from the component tree.

After the processing of the prepare_unregister event has completed, the component is removed
from the tree and an unregistered event is fired.

unregister_pending

classmethod handlers()
Returns a list of all event handlers for this Component

classmethod events()
Returns a list of all events this Component listens to

classmethod handles(*names)
Returns True if all names are event handlers of this Component

class circuits.core.components.Component(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

If you use Component instead of BaseComponent as base class for your own component class, then all methods
that are not marked as private (i.e: start with an underscore) are automatically decorated as handlers.

The methods are invoked for all events from the component’s channel where the event’s name matches the
method’s name.

circuits.core.debugger module

Debugger component used to debug each event in a system by printing each event to sys.stderr or to a Logger Com-
ponent instance.

class circuits.core.debugger.Debugger(errors=True, events=True, file=None, logger=None, pre-
fix=None, trim=None, **kwargs)

Bases: circuits.core.components.BaseComponent

2.5. API Documentation 57

circuits Documentation, Release 3.0

Create a new Debugger Component

Creates a new Debugger Component that listens to all events in the system printing each event to sys.stderr or a
Logger Component.

Variables

• IgnoreEvents – list of events (str) to ignore

• IgnoreChannels – list of channels (str) to ignore

• enabled – Enabled/Disabled flag

Parameters log – Logger Component instance or None (default)

initializes x; see x.__class__.__doc__ for signature

IgnoreEvents = [’generate_events’]

IgnoreChannels = []

circuits.core.events module

This module defines the basic event class and common events.

class circuits.core.events.EventType
Bases: type

class circuits.core.events.Event(*args, **kwargs)
Bases: object

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

58 Chapter 2. Documentation

circuits Documentation, Release 3.0

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

channels = ()
The channels this message is sent to.

parent = None

notify = False

success = False

failure = False

complete = False

alert_done = False

waitingHandlers = 0

classmethod create(name, *args, **kwargs)

child(name, *args, **kwargs)

name = ‘Event’

cancel()
Cancel the event from being processed (if not already)

stop()
Stop further processing of this event

class circuits.core.events.exception(type, value, traceback, handler=None, fevent=None)
Bases: circuits.core.events.Event

exception Event

This event is sent for any exceptions that occur during the execution of an event Handler that is not SystemExit
or KeyboardInterrupt.

Parameters

• type (type) – type of exception

• value (exceptions.TypeError) – exception object

• traceback (traceback) – traceback of exception

• handler (@handler(<method>)) – handler that raised the exception

• fevent (event) – event that failed

name = ‘exception’

class circuits.core.events.started(manager)
Bases: circuits.core.events.Event

started Event

This Event is sent when a Component or Manager has started running.

Parameters manager (Component or Manager) – The component or manager that was
started

2.5. API Documentation 59

circuits Documentation, Release 3.0

name = ‘started’

class circuits.core.events.stopped(manager)
Bases: circuits.core.events.Event

stopped Event

This Event is sent when a Component or Manager has stopped running.

Parameters manager (Component or Manager) – The component or manager that has
stopped

name = ‘stopped’

class circuits.core.events.signal(signo, stack)
Bases: circuits.core.events.Event

signal Event

This Event is sent when a Component receives a signal.

Parameters

• signo – The signal number received.

• stack – The interrupted stack frame.

name = ‘signal’

class circuits.core.events.registered(component, manager)
Bases: circuits.core.events.Event

registered Event

This Event is sent when a Component has registered with another Component or Manager. This Event is only
sent if the Component or Manager being registered which is not itself.

Parameters

• component (Component) – The Component being registered

• manager (Component or Manager) – The Component or Manager being registered
with

name = ‘registered’

class circuits.core.events.unregistered(*args, **kwargs)
Bases: circuits.core.events.Event

unregistered Event

This Event is sent when a Component has been unregistered from its Component or Manager.

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

60 Chapter 2. Documentation

circuits Documentation, Release 3.0

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘unregistered’

class circuits.core.events.generate_events(lock, max_wait)
Bases: circuits.core.events.Event

generate_events Event

This Event is sent by the circuits core. All components that generate timed events or events from external
sources (e.g. data becoming available) should fire any pending events in their “generate_events” handler.

The handler must either call stop() (*preventing other handlers from being called in the same iteration) or
must invoke reduce_time_left() with parameter 0.

Parameters max_wait – maximum time available for generating events.

Components that actually consume time waiting for events to be generated, thus suspending normal execution,
must provide a method resume that interrupts waiting for events.

time_left
The time left for generating events. A value less than 0 indicates unlimited time. You should have only
one component in your system (usually a poller component) that spends up to “time left” until it generates
an event.

reduce_time_left(time_left)
Update the time left for generating events. This is typically used by event generators that currently don’t
want to generate an event but know that they will within a certain time. By reducing the time left, they
make sure that they are reinvoked when the time for generating the event has come (at the latest).

This method can only be used to reduce the time left. If the parameter is larger than the current value of
time left, it is ignored.

If the time left is reduced to 0 and the event is currently being handled, the handler’s resume method is
invoked.

lock

name = ‘generate_events’

2.5. API Documentation 61

circuits Documentation, Release 3.0

circuits.core.handlers module

This module define the @handler decorator/function and the HandlesType type.

circuits.core.handlers.handler(*names, **kwargs)
Creates an Event Handler

This decorator can be applied to methods of classes derived from circuits.core.components.
BaseComponent. It marks the method as a handler for the events passed as arguments to the @handler
decorator. The events are specified by their name.

The decorated method’s arguments must match the arguments passed to the circuits.core.events.
Event on creation. Optionally, the method may have an additional first argument named event. If declared, the
event object that caused the handler to be invoked is assigned to it.

By default, the handler is invoked by the component’s root Manager for events that are propagated on the
channel determined by the BaseComponent’s channel attribute. This may be overridden by specifying a different
channel as a keyword parameter of the decorator (channel=...).

Keyword argument priority influences the order in which handlers for a specific event are invoked. The
higher the priority, the earlier the handler is executed.

If you want to override a handler defined in a base class of your component, you must specify
override=True, else your method becomes an additional handler for the event.

Return value

Normally, the results returned by the handlers for an event are simply collected in the circuits.core.
events.Event‘s value attribute. As a special case, a handler may return a types.GeneratorType.
This signals to the dispatcher that the handler isn’t ready to deliver a result yet. Rather, it has interrupted it’s
execution with a yield None statement, thus preserving its current execution state.

The dispatcher saves the returned generator object as a task. All tasks are reexamined (i.e. their next()method
is invoked) when the pending events have been executed.

This feature avoids an unnecessarily complicated chaining of event handlers. Imagine a handler A that needs the
results from firing an event E in order to complete. Then without this feature, the final action of A would be to
fire event E, and another handler for an event SuccessE would be required to complete handler A’s operation,
now having the result from invoking E available (actually it’s even a bit more complicated).

Using this “suspend” feature, the handler simply fires event E and then yields None until e.g. it finds a result in
E’s value attribute. For the simplest scenario, there even is a utility method circuits.core.manager.
Manager.callEvent() that combines firing and waiting.

class circuits.core.handlers.Unknown
Bases: object

Unknown Dummy Component

circuits.core.handlers.reprhandler(handler)

class circuits.core.handlers.HandlerMetaClass(name, bases, ns)
Bases: type

circuits.core.helpers module

class circuits.core.helpers.FallBackGenerator(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

resume()
Implements the resume method as required from components that handle GenerateEvents.

62 Chapter 2. Documentation

circuits Documentation, Release 3.0

class circuits.core.helpers.FallBackErrorHandler(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

If there is no handler for error events in the component hierarchy, this component’s handler is added automati-
cally. It simply prints the error information on stderr.

initializes x; see x.__class__.__doc__ for signature

class circuits.core.helpers.FallBackSignalHandler(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

If there is no handler for signal events in the component hierarchy, this component’s handler is added automati-
cally. It simply terminates the system if the signal is SIGINT or SIGTERM.

initializes x; see x.__class__.__doc__ for signature

circuits.core.loader module

This module implements a generic Loader suitable for dynamically loading components from other modules. This
supports loading from local paths, eggs and zip archives. Both setuptools and distribute are fully supported.

class circuits.core.loader.Loader(auto_register=True, init_args=None, init_kwargs=None,
paths=None, channel=’loader’)

Bases: circuits.core.components.BaseComponent

Create a new Loader Component

Creates a new Loader Component that enables dynamic loading of components from modules either in local
paths, eggs or zip archives.

initializes x; see x.__class__.__doc__ for signature

channel = ‘loader’

load(name)

circuits.core.manager module

This module defines the Manager class.

exception circuits.core.manager.UnregistrableError
Bases: exceptions.Exception

Raised if a component cannot be registered as child.

exception circuits.core.manager.TimeoutError
Bases: exceptions.Exception

Raised if wait event timeout occurred

class circuits.core.manager.CallValue(value)
Bases: object

class circuits.core.manager.ExceptionWrapper(exception)
Bases: object

extract()

class circuits.core.manager.Manager(*args, **kwargs)
Bases: object

2.5. API Documentation 63

circuits Documentation, Release 3.0

The manager class has two roles. As a base class for component implementation, it provides methods for event
and handler management. The method fireEvent() appends a new event at the end of the event queue for
later execution. waitEvent() suspends the execution of a handler until all handlers for a given event have
been invoked. callEvent() combines the last two methods in a single method.

The methods addHandler() and removeHandler() allow handlers for events to be added and removed
dynamically. (The more common way to register a handler is to use the handler() decorator or derive the
class from Component.)

In its second role, the Manager takes the role of the event executor. Every component hierarchy has a root
component that maintains a queue of events. Firing an event effectively means appending it to the event queue
maintained by the root manager. The flush() method removes all pending events from the queue and, for
each event, invokes all the handlers. Usually, flush() is indirectly invoked by run().

The manager optionally provides information about the execution of events as automatically generated events.
If an Event has its success attribute set to True, the manager fires a Success event if all handlers have
been executed without error. Note that this event will be enqueued (and dispatched) immediately after the events
that have been fired by the event’s handlers. So the success event indicates both the successful invocation of all
handlers for the event and the processing of the immediate follow-up events fired by those handlers.

Sometimes it is not sufficient to know that an event and its immediate follow-up events have been processed.
Rather, it is important to know when all state changes triggered by an event, directly or indirectly, have been
performed. This also includes the processing of events that have been fired when invoking the handlers for
the follow-up events and the processing of events that have again been fired by those handlers and so on. The
completion of the processing of an event and all its direct or indirect follow-up events may be indicated by a
Complete event. This event is generated by the manager if Event has its complete attribute set to True.

Apart from the event queue, the root manager also maintains a list of tasks, actually Python generators, that are
updated when the event queue has been flushed.

initializes x; see x.__class__.__doc__ for signature

name
Return the name of this Component/Manager

running
Return the running state of this Component/Manager

pid
Return the process id of this Component/Manager

getHandlers(event, channel, **kwargs)

addHandler(f)

removeHandler(method, event=None)

registerChild(component)

unregisterChild(component)

fireEvent(event, *channels, **kwargs)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

64 Chapter 2. Documentation

circuits Documentation, Release 3.0

fire(event, *channels, **kwargs)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

registerTask(g)

unregisterTask(g)

waitEvent(event, *channels, **kwargs)

wait(event, *channels, **kwargs)

callEvent(event, *channels, **kwargs)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

call(event, *channels, **kwargs)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

flushEvents()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

flush()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

start(process=False, link=None)
Start a new thread or process that invokes this manager’s run() method. The invocation of this method
returns immediately after the task or process has been started.

join()

stop()
Stop this manager. Invoking this method causes an invocation of run() to return.

processTask(event, task, parent=None)

tick(timeout=-1)
Execute all possible actions once. Process all registered tasks and flush the event queue. If the application
is running fire a GenerateEvents to get new events from sources.

This method is usually invoked from run(). It may also be used to build an application specific main
loop.

Parameters timeout (float, measuring seconds) – the maximum waiting time
spent in this method. If negative, the method may block until at least one action has been
taken.

2.5. API Documentation 65

circuits Documentation, Release 3.0

run(socket=None)
Run this manager. The method fires the Started event and then continuously calls tick().

The method returns when the manager’s stop() method is invoked.

If invoked by a programs main thread, a signal handler for the INT and TERM signals is installed. This
handler fires the corresponding Signal events and then calls stop() for the manager.

circuits.core.pollers module

Poller Components for asynchronous file and socket I/O.

This module contains Poller components that enable polling of file or socket descriptors for read/write events. Pollers:
- Select - Poll - EPoll

class circuits.core.pollers.BasePoller(channel=None)
Bases: circuits.core.components.BaseComponent

channel = None

resume()

addReader(source, fd)

addWriter(source, fd)

removeReader(fd)

removeWriter(fd)

isReading(fd)

isWriting(fd)

discard(fd)

getTarget(fd)

class circuits.core.pollers.Select(...) → new Select Poller Component
Bases: circuits.core.pollers.BasePoller

Creates a new Select Poller Component that uses the select poller implementation. This poller is not rec-
ommended but is available for legacy reasons as most systems implement select-based polling for backwards
compatibility.

channel = ‘select’

class circuits.core.pollers.Poll(...) → new Poll Poller Component
Bases: circuits.core.pollers.BasePoller

Creates a new Poll Poller Component that uses the poll poller implementation.

channel = ‘poll’

addReader(source, fd)

addWriter(source, fd)

removeReader(fd)

removeWriter(fd)

discard(fd)

66 Chapter 2. Documentation

circuits Documentation, Release 3.0

class circuits.core.pollers.EPoll(...) → new EPoll Poller Component
Bases: circuits.core.pollers.BasePoller

Creates a new EPoll Poller Component that uses the epoll poller implementation.

channel = ‘epoll’

addReader(source, fd)

addWriter(source, fd)

removeReader(fd)

removeWriter(fd)

discard(fd)

class circuits.core.pollers.KQueue(...) → new KQueue Poller Component
Bases: circuits.core.pollers.BasePoller

Creates a new KQueue Poller Component that uses the kqueue poller implementation.

channel = ‘kqueue’

addReader(source, sock)

addWriter(source, sock)

removeReader(sock)

removeWriter(sock)

discard(sock)

circuits.core.pollers.Poller
alias of Select

circuits.core.timers module

Timer component to facilitate timed events.

class circuits.core.timers.Timer(interval, event, *channels, **kwargs)
Bases: circuits.core.components.BaseComponent

Timer Component

A timer is a component that fires an event once after a certain delay or periodically at a regular interval.

Parameters

• interval (datetime or number of seconds as a float) – the delay or interval to wait
for until the event is fired. If interval is specified as datetime, the interval is recalculated as
the time span from now to the given datetime.

• event (Event) – the event to fire.

• persist (bool) – An optional keyword argument which if True will cause the event
to be fired repeatedly once per configured interval until the timer is unregistered. Default:
False

reset(interval=None)
Reset the timer, i.e. clear the amount of time already waited for.

expiry

2.5. API Documentation 67

circuits Documentation, Release 3.0

circuits.core.utils module

Utils

This module defines utilities used by circuits.

circuits.core.utils.flatten(root, visited=None)

circuits.core.utils.findchannel(root, channel, all=False)

circuits.core.utils.findtype(root, component, all=False)

circuits.core.utils.findcmp(root, component, all=False)

circuits.core.utils.findroot(component)

circuits.core.utils.safeimport(name)

circuits.core.values module

This defines the Value object used by components and events.

class circuits.core.values.Value(event=None, manager=None)
Bases: object

Create a new future Value Object

Creates a new future Value Object which is used by Event Objects and the Manager to store the result(s) of an
Event Handler’s exeuction of some Event in the system.

Parameters

• event (Event instance) – The Event this Value is associated with.

• manager (A Manager/Component instance.) – The Manager/Component used
to trigger notifications.

Variables

• result – True if this value has been changed.

• errors – True if while setting this value an exception occured.

• notify – True or an event name to notify of changes to this value

This is a Future/Promise implementation.

inform(force=False)

getValue(recursive=True)

setValue(value)

value
Value of this Value

circuits.core.workers module

Workers

Worker components used to perform “work” in independent threads or processes. Worker(s) are typically used by
a Pool (circuits.core.pools) to create a pool of workers. Worker(s) are not registered with a Manager or another

68 Chapter 2. Documentation

circuits Documentation, Release 3.0

Component - instead they are managed by the Pool. If a Worker is used independently it should not be registered as it
causes its main event handler _on_task to execute in the other thread blocking it.

class circuits.core.workers.task(f, *args, **kwargs)
Bases: circuits.core.events.Event

task Event

This Event is used to initiate a new task to be performed by a Worker or a Pool of Worker(s).

Parameters

• f (function) – The function to be executed.

• args (tuple) – Arguments to pass to the function

• kwargs (dict) – Keyword Arguments to pass to the function

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

success = True

failure = True

name = ‘task’

class circuits.core.workers.Worker(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

A thread/process Worker Component

This Component creates a Worker (either a thread or process) which when given a Task, will execute the given
function in the task in the background in its thread/process.

Parameters process (bool) – True to start this Worker as a process (Thread otherwise)

initializes x; see x.__class__.__doc__ for signature

channel = ‘worker’

init(process=False, workers=None, channel=’worker’)

Module contents

Core

This package contains the essential core parts of the circuits framework.

circuits.core.handler(*names, **kwargs)
Creates an Event Handler

This decorator can be applied to methods of classes derived from circuits.core.components.
BaseComponent. It marks the method as a handler for the events passed as arguments to the @handler
decorator. The events are specified by their name.

The decorated method’s arguments must match the arguments passed to the circuits.core.events.
Event on creation. Optionally, the method may have an additional first argument named event. If declared, the
event object that caused the handler to be invoked is assigned to it.

By default, the handler is invoked by the component’s root Manager for events that are propagated on the
channel determined by the BaseComponent’s channel attribute. This may be overridden by specifying a different
channel as a keyword parameter of the decorator (channel=...).

Keyword argument priority influences the order in which handlers for a specific event are invoked. The
higher the priority, the earlier the handler is executed.

2.5. API Documentation 69

circuits Documentation, Release 3.0

If you want to override a handler defined in a base class of your component, you must specify
override=True, else your method becomes an additional handler for the event.

Return value

Normally, the results returned by the handlers for an event are simply collected in the circuits.core.
events.Event‘s value attribute. As a special case, a handler may return a types.GeneratorType.
This signals to the dispatcher that the handler isn’t ready to deliver a result yet. Rather, it has interrupted it’s
execution with a yield None statement, thus preserving its current execution state.

The dispatcher saves the returned generator object as a task. All tasks are reexamined (i.e. their next()method
is invoked) when the pending events have been executed.

This feature avoids an unnecessarily complicated chaining of event handlers. Imagine a handler A that needs the
results from firing an event E in order to complete. Then without this feature, the final action of A would be to
fire event E, and another handler for an event SuccessE would be required to complete handler A’s operation,
now having the result from invoking E available (actually it’s even a bit more complicated).

Using this “suspend” feature, the handler simply fires event E and then yields None until e.g. it finds a result in
E’s value attribute. For the simplest scenario, there even is a utility method circuits.core.manager.
Manager.callEvent() that combines firing and waiting.

class circuits.core.BaseComponent(*args, **kwargs)
Bases: circuits.core.manager.Manager

This is the base class for all components in a circuits based application. Components can (and should, except
for root components) be registered with a parent component.

BaseComponents can declare methods as event handlers using the handler decoration (see circuits.core.
handlers.handler()). The handlers are invoked for matching events from the component’s channel (spec-
ified as the component’s channel attribute).

BaseComponents inherit from circuits.core.manager.Manager. This provides components with the
circuits.core.manager.Manager.fireEvent()method that can be used to fire events as the result
of some computation.

Apart from the fireEvent() method, the Manager nature is important for root components that are started
or run.

Variables channel – a component can be associated with a specific channel by setting this at-
tribute. This should either be done by specifying a class attribute channel in the derived class
or by passing a keyword parameter channel=”...” to __init__. If specified, the component’s
handlers receive events on the specified channel only, and events fired by the component will
be sent on the specified channel (this behavior may be overridden, see Event, fireEvent()
and handler()). By default, the channel attribute is set to “*”, meaning that events are fired
on all channels and received from all channels.

initializes x; see x.__class__.__doc__ for signature

channel = ‘*’

classmethod events()
Returns a list of all events this Component listens to

classmethod handlers()
Returns a list of all event handlers for this Component

classmethod handles(*names)
Returns True if all names are event handlers of this Component

register(parent)
Inserts this component in the component tree as a child of the given parent node.

70 Chapter 2. Documentation

circuits Documentation, Release 3.0

Parameters parent (Manager) – the parent component after registration has completed.

This method fires a Registered event to inform other components in the tree about the new member.

unregister()
Removes this component from the component tree.

Removing a component from the component tree is a two stage process. First, the component is marked
as to be removed, which prevents it from receiving further events, and a prepare_unregister event
is fired. This allows other components to e.g. release references to the component to be removed before it
is actually removed from the component tree.

After the processing of the prepare_unregister event has completed, the component is removed
from the tree and an unregistered event is fired.

unregister_pending

class circuits.core.Component(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

class circuits.core.Event(*args, **kwargs)
Bases: object

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

alert_done = False

2.5. API Documentation 71

circuits Documentation, Release 3.0

cancel()
Cancel the event from being processed (if not already)

channels = ()

child(name, *args, **kwargs)

complete = False

classmethod create(name, *args, **kwargs)

failure = False

name = ‘Event’

notify = False

parent = None

stop()
Stop further processing of this event

success = False

waitingHandlers = 0

class circuits.core.task(f, *args, **kwargs)
Bases: circuits.core.events.Event

task Event

This Event is used to initiate a new task to be performed by a Worker or a Pool of Worker(s).

Parameters

• f (function) – The function to be executed.

• args (tuple) – Arguments to pass to the function

• kwargs (dict) – Keyword Arguments to pass to the function

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

failure = True

name = ‘task’

success = True

class circuits.core.Worker(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

A thread/process Worker Component

This Component creates a Worker (either a thread or process) which when given a Task, will execute the given
function in the task in the background in its thread/process.

Parameters process (bool) – True to start this Worker as a process (Thread otherwise)

initializes x; see x.__class__.__doc__ for signature

channel = ‘worker’

init(process=False, workers=None, channel=’worker’)

class circuits.core.Bridge(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

72 Chapter 2. Documentation

circuits Documentation, Release 3.0

channel = ‘bridge’

ignore = [’registered’, ‘unregistered’, ‘started’, ‘stopped’, ‘error’, ‘value_changed’, ‘generate_events’, ‘read’, ‘write’, ‘close’, ‘connected’, ‘connect’, ‘disconnect’, ‘disconnected’, ‘_read’, ‘_write’]

init(socket, channel=’bridge’)

send(event)

class circuits.core.Debugger(errors=True, events=True, file=None, logger=None, prefix=None,
trim=None, **kwargs)

Bases: circuits.core.components.BaseComponent

Create a new Debugger Component

Creates a new Debugger Component that listens to all events in the system printing each event to sys.stderr or a
Logger Component.

Variables

• IgnoreEvents – list of events (str) to ignore

• IgnoreChannels – list of channels (str) to ignore

• enabled – Enabled/Disabled flag

Parameters log – Logger Component instance or None (default)

initializes x; see x.__class__.__doc__ for signature

IgnoreChannels = []

IgnoreEvents = [’generate_events’]

class circuits.core.Timer(interval, event, *channels, **kwargs)
Bases: circuits.core.components.BaseComponent

Timer Component

A timer is a component that fires an event once after a certain delay or periodically at a regular interval.

Parameters

• interval (datetime or number of seconds as a float) – the delay or interval to wait
for until the event is fired. If interval is specified as datetime, the interval is recalculated as
the time span from now to the given datetime.

• event (Event) – the event to fire.

• persist (bool) – An optional keyword argument which if True will cause the event
to be fired repeatedly once per configured interval until the timer is unregistered. Default:
False

expiry

reset(interval=None)
Reset the timer, i.e. clear the amount of time already waited for.

class circuits.core.Manager(*args, **kwargs)
Bases: object

The manager class has two roles. As a base class for component implementation, it provides methods for event
and handler management. The method fireEvent() appends a new event at the end of the event queue for
later execution. waitEvent() suspends the execution of a handler until all handlers for a given event have
been invoked. callEvent() combines the last two methods in a single method.

2.5. API Documentation 73

circuits Documentation, Release 3.0

The methods addHandler() and removeHandler() allow handlers for events to be added and removed
dynamically. (The more common way to register a handler is to use the handler() decorator or derive the
class from Component.)

In its second role, the Manager takes the role of the event executor. Every component hierarchy has a root
component that maintains a queue of events. Firing an event effectively means appending it to the event queue
maintained by the root manager. The flush() method removes all pending events from the queue and, for
each event, invokes all the handlers. Usually, flush() is indirectly invoked by run().

The manager optionally provides information about the execution of events as automatically generated events.
If an Event has its success attribute set to True, the manager fires a Success event if all handlers have
been executed without error. Note that this event will be enqueued (and dispatched) immediately after the events
that have been fired by the event’s handlers. So the success event indicates both the successful invocation of all
handlers for the event and the processing of the immediate follow-up events fired by those handlers.

Sometimes it is not sufficient to know that an event and its immediate follow-up events have been processed.
Rather, it is important to know when all state changes triggered by an event, directly or indirectly, have been
performed. This also includes the processing of events that have been fired when invoking the handlers for
the follow-up events and the processing of events that have again been fired by those handlers and so on. The
completion of the processing of an event and all its direct or indirect follow-up events may be indicated by a
Complete event. This event is generated by the manager if Event has its complete attribute set to True.

Apart from the event queue, the root manager also maintains a list of tasks, actually Python generators, that are
updated when the event queue has been flushed.

initializes x; see x.__class__.__doc__ for signature

addHandler(f)

call(event, *channels, **kwargs)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

callEvent(event, *channels, **kwargs)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

fire(event, *channels, **kwargs)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

fireEvent(event, *channels, **kwargs)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute

74 Chapter 2. Documentation

circuits Documentation, Release 3.0

is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

flush()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

flushEvents()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

getHandlers(event, channel, **kwargs)

join()

name
Return the name of this Component/Manager

pid
Return the process id of this Component/Manager

processTask(event, task, parent=None)

registerChild(component)

registerTask(g)

removeHandler(method, event=None)

run(socket=None)
Run this manager. The method fires the Started event and then continuously calls tick().

The method returns when the manager’s stop() method is invoked.

If invoked by a programs main thread, a signal handler for the INT and TERM signals is installed. This
handler fires the corresponding Signal events and then calls stop() for the manager.

running
Return the running state of this Component/Manager

start(process=False, link=None)
Start a new thread or process that invokes this manager’s run() method. The invocation of this method
returns immediately after the task or process has been started.

stop()
Stop this manager. Invoking this method causes an invocation of run() to return.

tick(timeout=-1)
Execute all possible actions once. Process all registered tasks and flush the event queue. If the application
is running fire a GenerateEvents to get new events from sources.

This method is usually invoked from run(). It may also be used to build an application specific main
loop.

Parameters timeout (float, measuring seconds) – the maximum waiting time
spent in this method. If negative, the method may block until at least one action has been
taken.

unregisterChild(component)

unregisterTask(g)

wait(event, *channels, **kwargs)

waitEvent(event, *channels, **kwargs)

2.5. API Documentation 75

circuits Documentation, Release 3.0

exception circuits.core.TimeoutError
Bases: exceptions.Exception

Raised if wait event timeout occurred

circuits.io package

Submodules

circuits.io.events module

I/O Events

This module implements commonly used I/O events used by other I/O modules.

class circuits.io.events.eof(*args, **kwargs)
Bases: circuits.core.events.Event

eof Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘eof’

76 Chapter 2. Documentation

circuits Documentation, Release 3.0

class circuits.io.events.seek(*args, **kwargs)
Bases: circuits.core.events.Event

seek Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘seek’

class circuits.io.events.read(*args, **kwargs)
Bases: circuits.core.events.Event

read Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

2.5. API Documentation 77

circuits Documentation, Release 3.0

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘read’

class circuits.io.events.close(*args, **kwargs)
Bases: circuits.core.events.Event

close Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

78 Chapter 2. Documentation

circuits Documentation, Release 3.0

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘close’

class circuits.io.events.write(*args, **kwargs)
Bases: circuits.core.events.Event

write Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘write’

class circuits.io.events.error(*args, **kwargs)
Bases: circuits.core.events.Event

error Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

2.5. API Documentation 79

circuits Documentation, Release 3.0

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘error’

class circuits.io.events.open(*args, **kwargs)
Bases: circuits.core.events.Event

open Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

80 Chapter 2. Documentation

circuits Documentation, Release 3.0

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘open’

class circuits.io.events.opened(*args, **kwargs)
Bases: circuits.core.events.Event

opened Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘opened’

class circuits.io.events.closed(*args, **kwargs)
Bases: circuits.core.events.Event

closed Event

2.5. API Documentation 81

circuits Documentation, Release 3.0

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘closed’

class circuits.io.events.ready(*args, **kwargs)
Bases: circuits.core.events.Event

ready Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

82 Chapter 2. Documentation

circuits Documentation, Release 3.0

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘ready’

class circuits.io.events.started(*args, **kwargs)
Bases: circuits.core.events.Event

started Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

2.5. API Documentation 83

circuits Documentation, Release 3.0

name = ‘started’

class circuits.io.events.stopped(*args, **kwargs)
Bases: circuits.core.events.Event

stopped Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘stopped’

class circuits.io.events.moved(*args, **kwargs)
Bases: circuits.core.events.Event

moved Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to

84 Chapter 2. Documentation

circuits Documentation, Release 3.0

as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘moved’

class circuits.io.events.created(*args, **kwargs)
Bases: circuits.core.events.Event

created Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

2.5. API Documentation 85

circuits Documentation, Release 3.0

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘created’

class circuits.io.events.deleted(*args, **kwargs)
Bases: circuits.core.events.Event

deleted Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘deleted’

class circuits.io.events.accessed(*args, **kwargs)
Bases: circuits.core.events.Event

accessed Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

86 Chapter 2. Documentation

circuits Documentation, Release 3.0

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘accessed’

class circuits.io.events.modified(*args, **kwargs)
Bases: circuits.core.events.Event

modified Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

2.5. API Documentation 87

circuits Documentation, Release 3.0

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘modified’

class circuits.io.events.unmounted(*args, **kwargs)
Bases: circuits.core.events.Event

unmounted Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘unmounted’

88 Chapter 2. Documentation

circuits Documentation, Release 3.0

circuits.io.file module

File I/O

This module implements a wrapper for basic File I/O.

class circuits.io.file.File(*args, **kwargs)
Bases: circuits.core.components.Component

initializes x; see x.__class__.__doc__ for signature

channel = ‘file’

init(filename, mode=’r’, bufsize=4096, encoding=None, channel=’file’)

closed

filename

mode

close()

seek(offset, whence=0)

write(data)

circuits.io.notify module

circuits.io.process module

Process

This module implements a wrapper for basic subprocess.Popen functionality.

class circuits.io.process.Process(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = ‘process’

init(args, cwd=None, shell=False)

start()

stop()

kill()

signal(signal)

wait()

write(data)

status

circuits.io.serial module

Serial I/O

This module implements basic Serial (RS232) I/O.

2.5. API Documentation 89

circuits Documentation, Release 3.0

class circuits.io.serial.Serial(port, baudrate=115200, bufsize=4096, timeout=0.2, chan-
nel=’serial’)

Bases: circuits.core.components.Component

channel = ‘serial’

close()

write(data)

Module contents

I/O Support

This package contains various I/O Components. Provided are a generic File Component, StdIn, StdOut and StdErr
components. Instances of StdIn, StdOut and StdErr are also created by importing this package.

circuits.net package

Submodules

circuits.net.events module

Networking Events

This module implements commonly used Networking events used by socket components.

class circuits.net.events.connect(*args, **kwargs)
Bases: circuits.core.events.Event

connect Event

This Event is sent when a new client connection has arrived on a server. This event is also used for client’s to
initiate a new connection to a remote host.

Note: This event is used for both Client and Server Components.

Parameters

• args (tuple) – Client: (host, port) Server: (sock, host, port)

• kwargs (dict) – Client: (ssl)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘connect’

class circuits.net.events.disconnect(*args)
Bases: circuits.core.events.Event

disconnect Event

This Event is sent when a client connection has closed on a server. This event is also used for client’s to
disconnect from a remote host.

Note: This event is used for both Client and Server Components.

90 Chapter 2. Documentation

circuits Documentation, Release 3.0

Parameters args – Client: () Server: (sock)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘disconnect’

class circuits.net.events.connected(host, port)
Bases: circuits.core.events.Event

connected Event

This Event is sent when a client has successfully connected.

Note: This event is for Client Components.

Parameters

• host – The hostname connected to.

• port – The port connected to

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘connected’

class circuits.net.events.disconnected
Bases: circuits.core.events.Event

disconnected Event

This Event is sent when a client has disconnected

Note: This event is for Client Components.

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘disconnected’

class circuits.net.events.read(*args)
Bases: circuits.core.events.Event

read Event

This Event is sent when a client or server connection has read any data.

Note: This event is used for both Client and Server Components.

Parameters args – Client: (data) Server: (sock, data)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘read’

class circuits.net.events.error(*args)
Bases: circuits.core.events.Event

error Event

This Event is sent when a client or server connection has an error.

2.5. API Documentation 91

circuits Documentation, Release 3.0

Note: This event is used for both Client and Server Components.

Parameters args – Client: (error) Server: (sock, error)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘error’

class circuits.net.events.broadcast(*args)
Bases: circuits.core.events.Event

broadcast Event

This Event is used by the UDPServer/UDPClient sockets to send a message on the <broadcast> network.

Note:

•This event is never sent, it is used to send data.

•This event is used for both Client and Server UDP Components.

Parameters args – (data, port)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘broadcast’

class circuits.net.events.write(*args)
Bases: circuits.core.events.Event

write Event

This Event is used to notify a client, client connection or server that we have data to be written.

Note:

•This event is never sent, it is used to send data.

•This event is used for both Client and Server Components.

Parameters args – Client: (data) Server: (sock, data)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘write’

class circuits.net.events.close(*args)
Bases: circuits.core.events.Event

close Event

This Event is used to notify a client, client connection or server that we want to close.

Note:

•This event is never sent, it is used to close.

92 Chapter 2. Documentation

circuits Documentation, Release 3.0

•This event is used for both Client and Server Components.

Parameters args – Client: () Server: (sock)

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘close’

class circuits.net.events.ready(component, bind=None)
Bases: circuits.core.events.Event

ready Event

This Event is used to notify the rest of the system that the underlying Client or Server Component is ready
to begin processing connections or incoming/outgoing data. (This is triggered as a direct result of having the
capability to support multiple client/server components with a single poller component instance in a system).

Note: This event is used for both Client and Server Components.

Parameters

• component – The Client/Server Component that is ready.

• bind – The (host, port) the server has bound to.

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘ready’

class circuits.net.events.closed(*args, **kwargs)
Bases: circuits.core.events.Event

closed Event

This Event is sent when a server has closed its listening socket.

Note: This event is for Server components.

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

2.5. API Documentation 93

circuits Documentation, Release 3.0

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘closed’

circuits.net.sockets module

Socket Components

This module contains various Socket Components for use with Networking.

class circuits.net.sockets.Client(bind=None, bufsize=4096, channel=’client’)
Bases: circuits.core.components.BaseComponent

channel = ‘client’

parse_bind_parameter(bind_parameter)

connected

close()

write(data)

class circuits.net.sockets.TCPClient(bind=None, bufsize=4096, channel=’client’)
Bases: circuits.net.sockets.Client

socket_family = 2

connect(host, port, secure=False, **kwargs)

class circuits.net.sockets.TCP6Client(bind=None, bufsize=4096, channel=’client’)
Bases: circuits.net.sockets.TCPClient

socket_family = 10

parse_bind_parameter(bind_parameter)

class circuits.net.sockets.UNIXClient(bind=None, bufsize=4096, channel=’client’)
Bases: circuits.net.sockets.Client

ready(component)

connect(path, secure=False, **kwargs)

class circuits.net.sockets.Server(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.core.components.BaseComponent

94 Chapter 2. Documentation

circuits Documentation, Release 3.0

channel = ‘server’

parse_bind_parameter(bind_parameter)

connected

host

port

close(sock=None)

write(sock, data)

class circuits.net.sockets.TCPServer(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

socket_family = 2

parse_bind_parameter(bind_parameter)

circuits.net.sockets.parse_ipv4_parameter(bind_parameter)

circuits.net.sockets.parse_ipv6_parameter(bind_parameter)

class circuits.net.sockets.TCP6Server(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.net.sockets.TCPServer

socket_family = 10

parse_bind_parameter(bind_parameter)

class circuits.net.sockets.UNIXServer(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

class circuits.net.sockets.UDPServer(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

socket_family = 2

close()

write(address, data)

broadcast(data, port)

circuits.net.sockets.UDPClient
alias of UDPServer

class circuits.net.sockets.UDP6Server(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.net.sockets.UDPServer

socket_family = 10

parse_bind_parameter(bind_parameter)

circuits.net.sockets.UDP6Client
alias of UDP6Server

circuits.net.sockets.Pipe(*channels, **kwargs)
Create a new full duplex Pipe

Returns a pair of UNIXClient instances connected on either side of the pipe.

2.5. API Documentation 95

circuits Documentation, Release 3.0

Module contents

Networking Components

This package contains components that implement network sockets and protocols for implementing client and server
network applications.

copyright CopyRight (C) 2004-2013 by James Mills

license MIT (See: LICENSE)

circuits.node package

Submodules

circuits.node.client module

Client

...

class circuits.node.client.Client(host, port, channel=’node’)
Bases: circuits.core.components.BaseComponent

...

channel = ‘node’

close()

connect(host, port)

send(event, e)

circuits.node.events module

Events

...

class circuits.node.events.packet(*args, **kwargs)
Bases: circuits.core.events.Event

packet Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

96 Chapter 2. Documentation

circuits Documentation, Release 3.0

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘packet’

class circuits.node.events.remote(event, node, channel=None)
Bases: circuits.core.events.Event

remote Event

...

name = ‘remote’

circuits.node.node module

Node

...

class circuits.node.node.Node(bind=None, channel=’node’)
Bases: circuits.core.components.BaseComponent

...

channel = ‘node’

add(name, host, port)

circuits.node.server module

Server

...

class circuits.node.server.Server(bind, channel=’node’)
Bases: circuits.core.components.BaseComponent

...

channel = ‘node’

2.5. API Documentation 97

circuits Documentation, Release 3.0

send(v)

host

port

circuits.node.utils module

Utils

...

circuits.node.utils.load_event(s)

circuits.node.utils.dump_event(e, id)

circuits.node.utils.dump_value(v)

circuits.node.utils.load_value(v)

Module contents

Node

Distributed and Inter-Processing support for circuits

circuits.protocols package

Submodules

circuits.protocols.http module

class circuits.protocols.http.request(*args, **kwargs)
Bases: circuits.core.events.Event

request Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

98 Chapter 2. Documentation

circuits Documentation, Release 3.0

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘request’

class circuits.protocols.http.response(*args, **kwargs)
Bases: circuits.core.events.Event

response Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘response’

2.5. API Documentation 99

circuits Documentation, Release 3.0

class circuits.protocols.http.ResponseObject(headers, status, version)
Bases: object

read()

class circuits.protocols.http.HTTP(encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

channel = ‘web’

circuits.protocols.irc module

Internet Relay Chat Protocol

This package implements the Internet Relay Chat Protocol or commonly known as IRC. Support for both server and
client is implemented.

circuits.protocols.line module

Line Protocol

This module implements the basic Line protocol.

This module can be used in both server and client implementations.

circuits.protocols.line.splitLines(s, buffer)→ lines, buffer
Append s to buffer and find any new lines of text in the string splitting at the standard IRC delimiter CRLF. Any
new lines found, return them as a list and the remaining buffer for further processing.

class circuits.protocols.line.line(*args, **kwargs)
Bases: circuits.core.events.Event

line Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

100 Chapter 2. Documentation

circuits Documentation, Release 3.0

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘line’

class circuits.protocols.line.Line(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

Line Protocol

Implements the Line Protocol.

Incoming data is split into lines with a splitter function. For each line of data processed a Line Event is created.
Any unfinished lines are appended into an internal buffer.

A custom line splitter function can be passed to customize how data is split into lines. This function must accept
two arguments, the data to process and any left over data from a previous invocation of the splitter function. The
function must also return a tuple of two items, a list of lines and any left over data.

Parameters splitter (function) – a line splitter function

This Component operates in two modes. In normal operation it’s expected to be used in conjunction with com-
ponents that expose a Read Event on a “read” channel with only one argument (data). Some builtin components
that expose such events are: - circuits.net.sockets.TCPClient - circuits.io.File

The second mode of operation works with circuits.net.sockets.Server components such as TCPServer,
UNIXServer, etc. It’s expected that two arguments exist in the Read Event, sock and data. The following
two arguments can be passed to affect how unfinished data is stored and retrieved for such components:

Parameters getBuffer (function) – function to retrieve the buffer for a client sock

This function must accept one argument (sock,) the client socket whoose buffer is to be retrieved.

Parameters updateBuffer (function) – function to update the buffer for a client sock

This function must accept two arguments (sock, buffer,) the client socket and the left over buffer to be updated.

@note: This Component must be used in conjunction with a Component that exposes Read events on a
“read” Channel.

initializes x; see x.__class__.__doc__ for signature

circuits.protocols.websocket module

class circuits.protocols.websocket.WebSocketCodec(sock=None, data=bytearray(b’‘),
*args, **kwargs)

Bases: circuits.core.components.BaseComponent

WebSocket Protocol

Implements the Data Framing protocol for WebSocket.

This component is used in conjunction with a parent component that receives Read events on its channel. When
created (after a successful WebSocket setup handshake), the codec registers a handler on the parent’s channel

2.5. API Documentation 101

circuits Documentation, Release 3.0

that filters out these Read events for a given socket (if used in a server) or all Read events (if used in a client).
The data is decoded and the contained payload is emitted as Read events on the codec’s channel.

The data from write events sent to the codec’s channel (with socket argument if used in a server) is encoded
according to the WebSocket Data Framing protocol. The encoded data is then forwarded as write events on the
parents channel.

Creates a new codec.

Parameters sock – the socket used in Read and write events (if used in a server, else None)

channel = ‘ws’

Module contents

Networking Protocols

This package contains components that implement various networking protocols.

circuits.tools package

Module contents

Circuits Tools

circuits.tools contains a standard set of tools for circuits. These tools are installed as executables with a prefix of
“circuits.”

circuits.tools.tryimport(modules, obj=None, message=None)

circuits.tools.walk(x, f, d=0, v=None)

circuits.tools.edges(x, e=None, v=None, d=0)

circuits.tools.findroot(x)

circuits.tools.kill(x)

circuits.tools.graph(x, name=None)
Display a directed graph of the Component structure of x

Parameters

• x (Component or Manager) – A Component or Manager to graph

• name (str) – A name for the graph (defaults to x’s name)

@return: A directed graph representing x’s Component structure. @rtype: str

circuits.tools.inspect(x)
Display an inspection report of the Component or Manager x

Parameters x (Component or Manager) – A Component or Manager to graph

@return: A detailed inspection report of x @rtype: str

circuits.tools.deprecated(f)

102 Chapter 2. Documentation

circuits Documentation, Release 3.0

circuits.web package

Subpackages

circuits.web.dispatchers package

Submodules

circuits.web.dispatchers.dispatcher module

Dispatcher

This module implements a basic URL to Channel dispatcher. This is the default dispatcher used by circuits.web

circuits.web.dispatchers.dispatcher.resolve_path(paths, parts)

circuits.web.dispatchers.dispatcher.resolve_methods(parts)

circuits.web.dispatchers.dispatcher.find_handlers(req, paths)

class circuits.web.dispatchers.dispatcher.Dispatcher(**kwargs)
Bases: circuits.core.components.BaseComponent

channel = ‘web’

circuits.web.dispatchers.jsonrpc module

JSON RPC

This module implements a JSON RPC dispatcher that translates incoming RPC calls over JSON into RPC events.

class circuits.web.dispatchers.jsonrpc.rpc(*args, **kwargs)
Bases: circuits.core.events.Event

RPC Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

2.5. API Documentation 103

circuits Documentation, Release 3.0

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘rpc’

class circuits.web.dispatchers.jsonrpc.JSONRPC(path=None, encoding=’utf-8’,
rpc_channel=’*’)

Bases: circuits.core.components.BaseComponent

channel = ‘web’

circuits.web.dispatchers.static module

Static

This modStatic implements a Static dispatcher used to serve up static resources and an optional apache-style directory
listing.

class circuits.web.dispatchers.static.Static(path=None, docroot=None, de-
faults=(‘index.html’, ‘index.xhtml’), dirlist-
ing=False)

Bases: circuits.core.components.BaseComponent

channel = ‘web’

circuits.web.dispatchers.virtualhosts module

VirtualHost

This module implements a virtual host dispatcher that sends requests for configured virtual hosts to different dispatch-
ers.

class circuits.web.dispatchers.virtualhosts.VirtualHosts(domains)
Bases: circuits.core.components.BaseComponent

Forward to anotehr Dispatcher based on the Host header.

This can be useful when running multiple sites within one server. It allows several domains to point to different
parts of a single website structure. For example: - http://www.domain.example -> / - http://www.domain2.
example -> /domain2 - http://www.domain2.example:443 -> /secure

Parameters domains (dict) – a dict of {host header value: virtual prefix} pairs.

The incoming “Host” request header is looked up in this dict, and, if a match is found, the corresponding “virtual
prefix” value will be prepended to the URL path before passing the request onto the next dispatcher.

104 Chapter 2. Documentation

http://www.domain.example
http://www.domain2.example
http://www.domain2.example
http://www.domain2.example:443

circuits Documentation, Release 3.0

Note that you often need separate entries for “example.com” and “www.example.com”. In addition, “Host”
headers may contain the port number.

channel = ‘web’

circuits.web.dispatchers.xmlrpc module

XML RPC

This module implements a XML RPC dispatcher that translates incoming RPC calls over XML into RPC events.

class circuits.web.dispatchers.xmlrpc.rpc(*args, **kwargs)
Bases: circuits.core.events.Event

rpc Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘rpc’

class circuits.web.dispatchers.xmlrpc.XMLRPC(path=None, encoding=’utf-8’,
rpc_channel=’*’)

Bases: circuits.core.components.BaseComponent

channel = ‘web’

2.5. API Documentation 105

circuits Documentation, Release 3.0

Module contents

Dispatchers

This package contains various circuits.web dispatchers By default a circuits.web.Server Component uses the
dispatcher.Dispatcher

circuits.web.parsers package

Submodules

circuits.web.parsers.http module

exception circuits.web.parsers.http.InvalidRequestLine
Bases: exceptions.Exception

error raised when first line is invalid

exception circuits.web.parsers.http.InvalidHeader
Bases: exceptions.Exception

error raised on invalid header

exception circuits.web.parsers.http.InvalidChunkSize
Bases: exceptions.Exception

error raised when we parse an invalid chunk size

class circuits.web.parsers.http.HttpParser(kind=2, decompress=False)
Bases: object

get_version()

get_method()

get_status_code()

get_url()

get_scheme()

get_path()

get_query_string()

get_headers()

recv_body()
return last chunk of the parsed body

recv_body_into(barray)
Receive the last chunk of the parsed bodyand store the data in a buffer rather than creating a new string.

is_upgrade()
Do we get upgrade header in the request. Useful for websockets

is_headers_complete()
return True if all headers have been parsed.

is_partial_body()
return True if a chunk of body have been parsed

106 Chapter 2. Documentation

circuits Documentation, Release 3.0

is_message_begin()
return True if the parsing start

is_message_complete()
return True if the parsing is done (we get EOF)

is_chunked()
return True if Transfer-Encoding header value is chunked

should_keep_alive()
return True if the connection should be kept alive

execute(data, length)

circuits.web.parsers.multipart module

Parser for multipart/form-data

This module provides a parser for the multipart/form-data format. It can read from a file, a socket or a WSGI envi-
ronment. The parser can be used to replace cgi.FieldStorage (without the bugs) and works with Python 2.5+ and 3.x
(2to3).

Licence (MIT)

Copyright (c) 2010, Marcel Hellkamp. Inspired by the Werkzeug library: http://werkzeug.pocoo.org/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

class circuits.web.parsers.multipart.MultiDict(*a, **k)
Bases: _abcoll.MutableMapping

A dict that remembers old values for each key

keys()

append(key, value)

replace(key, value)

getall(key)

get(key, default=None, index=-1)

iterallitems()

2.5. API Documentation 107

http://werkzeug.pocoo.org/

circuits Documentation, Release 3.0

circuits.web.parsers.multipart.tob(data, enc=’utf8’)

circuits.web.parsers.multipart.copy_file(stream, target, maxread=-1, buffer_size=32)
Read from :stream and write to :target until :maxread or EOF.

circuits.web.parsers.multipart.header_quote(val)

circuits.web.parsers.multipart.header_unquote(val, filename=False)

circuits.web.parsers.multipart.parse_options_header(header, options=None)

exception circuits.web.parsers.multipart.MultipartError
Bases: exceptions.ValueError

class circuits.web.parsers.multipart.MultipartParser(stream, boundary,
content_length=-1,
disk_limit=1073741824,
mem_limit=1048576,
memfile_limit=262144,
buffer_size=65536,
charset=’latin1’)

Bases: object

Parse a multipart/form-data byte stream. This object is an iterator over the parts of the message.

Parameters

• stream – A file-like stream. Must implement .read(size).

• boundary – The multipart boundary as a byte string.

• content_length – The maximum number of bytes to read.

parts()
Returns a list with all parts of the multipart message.

get(name, default=None)
Return the first part with that name or a default value (None).

get_all(name)
Return a list of parts with that name.

class circuits.web.parsers.multipart.MultipartPart(buffer_size=65536, mem-
file_limit=262144, charset=’latin1’)

Bases: object

feed(line, nl=’‘)

write_header(line, nl)

write_body(line, nl)

finish_header()

is_buffered()
Return true if the data is fully buffered in memory.

value
Data decoded with the specified charset

save_as(path)

circuits.web.parsers.multipart.parse_form_data(environ, charset=’utf8’, strict=False,
**kw)

Parse form data from an environ dict and return a (forms, files) tuple. Both tuple values are dictionaries with

108 Chapter 2. Documentation

circuits Documentation, Release 3.0

the form-field name as a key (text_type) and lists as values (multiple values per key are possible). The forms-
dictionary contains form-field values as text_type strings. The files-dictionary contains MultipartPart
instances, either because the form-field was a file-upload or the value is to big to fit into memory limits.

Parameters

• environ – An WSGI environment dict.

• charset – The charset to use if unsure. (default: utf8)

• strict – If True, raise MultipartError on any parsing errors. These are silently
ignored by default.

circuits.web.parsers.querystring module

class circuits.web.parsers.querystring.QueryStringToken
Bases: object

ARRAY = ‘ARRAY’

OBJECT = ‘OBJECT’

KEY = ‘KEY’

class circuits.web.parsers.querystring.QueryStringParser(data)
Bases: object

process(pair)

parse(key, value)

tokens(key)

Module contents

circuits.web parsers

circuits.web.websockets package

Submodules

circuits.web.websockets.client module

class circuits.web.websockets.client.WebSocketClient(url, channel=’wsclient’, wschan-
nel=’ws’, headers={})

Bases: circuits.core.components.BaseComponent

An RFC 6455 compliant WebSocket client component. Upon receiving a circuits.web.client.
Connect event, the component tries to establish the connection to the server in a two stage process. First,
a circuits.net.events.connect event is sent to a child TCPClient. When the TCP connection has
been established, the HTTP request for opening the WebSocket is sent to the server. A failure in this setup
process is signaled by raising an NotConnected exception.

When the server accepts the request, the WebSocket connection is established and can be used very much like
an ordinary socket by handling read events on and sending write events to the channel specified as the
wschannel parameter of the constructor. Firing a close event on that channel closes the connection in an
orderly fashion (i.e. as specified by the WebSocket protocol).

2.5. API Documentation 109

circuits Documentation, Release 3.0

Parameters

• url – the URL to connect to.

• channel – the channel used by this component

• wschannel – the channel used for the actual WebSocket communication (read, write,
close events)

• headers – additional headers to be passed with the WebSocket setup HTTP request

channel = ‘wsclient’

close()

connected

circuits.web.websockets.dispatcher module

class circuits.web.websockets.dispatcher.WebSocketsDispatcher(path=None, wschan-
nel=’wsserver’,
*args, **kwargs)

Bases: circuits.core.components.BaseComponent

This class implements an RFC 6455 compliant WebSockets dispatcher that handles the WebSockets handshake
and upgrades the connection.

The dispatcher listens on its channel for Request events and tries to match them with a given path. Upon
a match, the request is checked for the proper Opening Handshake information. If successful, the dispatcher
confirms the establishment of the connection to the client. Any subsequent data from the client is handled as a
WebSocket data frame, decoded and fired as a Read event on the wschannel passed to the constructor. The
data from write events on that channel is encoded as data frames and forwarded to the client.

Firing a Close event on the wschannel closes the connection in an orderly fashion (i.e. as specified by the
WebSocket protocol).

Parameters

• path – the path to handle. Requests that start with this path are considered to be WebSocket
Opening Handshakes.

• wschannel – the channel on which read events from the client will be delivered and
where write events to the client will be sent to.

channel = ‘web’

Module contents

circuits.web websockets

Submodules

circuits.web.client module

circuits.web.client.parse_url(url)

exception circuits.web.client.HTTPException
Bases: exceptions.Exception

110 Chapter 2. Documentation

circuits Documentation, Release 3.0

exception circuits.web.client.NotConnected
Bases: circuits.web.client.HTTPException

class circuits.web.client.request(method, path, body=None, headers={})
Bases: circuits.core.events.Event

request Event

This Event is used to initiate a new request.

Parameters

• method (str) – HTTP Method (PUT, GET, POST, DELETE)

• url (str) – Request URL

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

name = ‘request’

class circuits.web.client.Client(channel=’client’)
Bases: circuits.core.components.BaseComponent

channel = ‘client’

write(data)

close()

connect(event, host=None, port=None, secure=None)

request(method, url, body=None, headers={})

connected

response

circuits.web.constants module

Global Constants

This module implements required shared global constants.

circuits.web.controllers module

Controllers

This module implements ...

circuits.web.controllers.expose(*channels, **config)

class circuits.web.controllers.ExposeMetaClass(name, bases, dct)
Bases: type

class circuits.web.controllers.BaseController(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = ‘/’

2.5. API Documentation 111

circuits Documentation, Release 3.0

uri
Return the current Request URI

See also:

circuits.web.url.URL

forbidden(description=None)
Return a 403 (Forbidden) response

Parameters description (str) – Message to display

notfound(description=None)
Return a 404 (Not Found) response

Parameters description (str) – Message to display

redirect(urls, code=None)
Return a 30x (Redirect) response

Redirect to another location specified by urls with an optional custom response code.

Parameters

• urls (str or list) – A single URL or list of URLs

• code (int) – HTTP Redirect code

serve_file(path, type=None, disposition=None, name=None)

serve_download(path, name=None)

expires(secs=0, force=False)

class circuits.web.controllers.Controller(*args, **kwargs)
Bases: circuits.web.controllers.BaseController

initializes x; see x.__class__.__doc__ for signature

circuits.web.controllers.exposeJSON(*channels, **config)

class circuits.web.controllers.ExposeJSONMetaClass(name, bases, dct)
Bases: type

class circuits.web.controllers.JSONController(*args, **kwargs)
Bases: circuits.web.controllers.BaseController

initializes x; see x.__class__.__doc__ for signature

circuits.web.errors module

Errors

This module implements a set of standard HTTP Errors.

class circuits.web.errors.httperror(request, response, code=None, **kwargs)
Bases: circuits.core.events.Event

An event for signaling an HTTP error

The constructor creates a new instance and modifies the response argument to reflect the error.

contenttype = ‘text/html’

name = ‘httperror’

112 Chapter 2. Documentation

circuits Documentation, Release 3.0

code = 500

description = ‘’

sanitize()

class circuits.web.errors.forbidden(request, response, code=None, **kwargs)
Bases: circuits.web.errors.httperror

An event for signaling the HTTP Forbidden error

The constructor creates a new instance and modifies the response argument to reflect the error.

code = 403

name = ‘forbidden’

class circuits.web.errors.unauthorized(request, response, code=None, **kwargs)
Bases: circuits.web.errors.httperror

An event for signaling the HTTP Unauthorized error

The constructor creates a new instance and modifies the response argument to reflect the error.

code = 401

name = ‘unauthorized’

class circuits.web.errors.notfound(request, response, code=None, **kwargs)
Bases: circuits.web.errors.httperror

An event for signaling the HTTP Not Fouond error

The constructor creates a new instance and modifies the response argument to reflect the error.

code = 404

name = ‘notfound’

class circuits.web.errors.redirect(request, response, urls, code=None)
Bases: circuits.web.errors.httperror

An event for signaling the HTTP Redirect response

The constructor creates a new instance and modifies the response argument to reflect a redirect response to the
given url.

name = ‘redirect’

circuits.web.events module

Events

This module implements the necessary Events needed.

class circuits.web.events.request(Event)→ request Event
Bases: circuits.core.events.Event

args: request, response

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

2.5. API Documentation 113

circuits Documentation, Release 3.0

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

success = True

failure = True

complete = True

name = ‘request’

class circuits.web.events.response(Event)→ response Event
Bases: circuits.core.events.Event

args: request, response

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

114 Chapter 2. Documentation

circuits Documentation, Release 3.0

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

success = True

failure = True

complete = True

name = ‘response’

class circuits.web.events.stream(Event)→ stream Event
Bases: circuits.core.events.Event

args: request, response

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

2.5. API Documentation 115

circuits Documentation, Release 3.0

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

success = True

failure = True

complete = True

name = ‘stream’

class circuits.web.events.terminate(*args, **kwargs)
Bases: circuits.core.events.Event

terminate Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

name = ‘terminate’

116 Chapter 2. Documentation

circuits Documentation, Release 3.0

circuits.web.exceptions module

Exceptions

This module implements a set of standard HTTP Errors as Python Exceptions.

Note: This code is mostly borrowed from werkzeug and adapted for circuits.web

exception circuits.web.exceptions.HTTPException(description=None, traceback=None)
Bases: exceptions.Exception

Baseclass for all HTTP exceptions. This exception can be called by WSGI applications to render a default error
page or you can catch the subclasses of it independently and render nicer error messages.

code = None

description = None

traceback = True

name
The status name.

exception circuits.web.exceptions.BadRequest(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

400 Bad Request

Raise if the browser sends something to the application the application or server cannot handle.

code = 400

description = ‘<p>The browser (or proxy) sent a request that this server could not understand.</p>’

exception circuits.web.exceptions.UnicodeError(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

raised by the request functions if they were unable to decode the incoming data properly.

exception circuits.web.exceptions.Unauthorized(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

401 Unauthorized

Raise if the user is not authorized. Also used if you want to use HTTP basic auth.

code = 401

description = “<p>The server could not verify that you are authorized to access the URL requested. You either supplied the wrong credentials (e.g. a bad password), or your browser doesn’t understand how to supply the credentials required.</p><p>In case you are allowed to request the document, please check your user-id and password and try again.</p>”

exception circuits.web.exceptions.Forbidden(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

403 Forbidden

Raise if the user doesn’t have the permission for the requested resource but was authenticated.

code = 403

description = “<p>You don’t have the permission to access the requested resource. It is either read-protected or not readable by the server.</p>”

exception circuits.web.exceptions.NotFound(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

404 Not Found

Raise if a resource does not exist and never existed.

2.5. API Documentation 117

circuits Documentation, Release 3.0

code = 404

description = ‘<p>The requested URL was not found on the server.</p><p>If you entered the URL manually please check your spelling and try again.</p>’

exception circuits.web.exceptions.MethodNotAllowed(method, description=None)
Bases: circuits.web.exceptions.HTTPException

405 Method Not Allowed

Raise if the server used a method the resource does not handle. For example POST if the resource is view only.
Especially useful for REST.

The first argument for this exception should be a list of allowed methods. Strictly speaking the response would
be invalid if you don’t provide valid methods in the header which you can do with that list.

code = 405

exception circuits.web.exceptions.NotAcceptable(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

406 Not Acceptable

Raise if the server can’t return any content conforming to the Accept headers of the client.

code = 406

description = ‘<p>The resource identified by the request is only capable of generating response entities which have content characteristics not acceptable according to the accept headers sent in the request.</p>’

exception circuits.web.exceptions.RequestTimeout(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

408 Request Timeout

Raise to signalize a timeout.

code = 408

description = “<p>The server closed the network connection because the browser didn’t finish the request within the specified time.</p>”

exception circuits.web.exceptions.Gone(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

410 Gone

Raise if a resource existed previously and went away without new location.

code = 410

description = ‘<p>The requested URL is no longer available on this server and there is no forwarding address.</p><p>If you followed a link from a foreign page, please contact the author of this page.’

exception circuits.web.exceptions.LengthRequired(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

411 Length Required

Raise if the browser submitted data but no Content-Length header which is required for the kind of pro-
cessing the server does.

code = 411

description = ‘<p>A request with this method requires a valid <code>Content-Length</code> header.</p>’

exception circuits.web.exceptions.PreconditionFailed(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

412 Precondition Failed

Status code used in combination with If-Match, If-None-Match, or If-Unmodified-Since.

118 Chapter 2. Documentation

circuits Documentation, Release 3.0

code = 412

description = ‘<p>The precondition on the request for the URL failed positive evaluation.</p>’

exception circuits.web.exceptions.RequestEntityTooLarge(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

413 Request Entity Too Large

The status code one should return if the data submitted exceeded a given limit.

code = 413

description = ‘<p>The data value transmitted exceeds the capacity limit.</p>’

exception circuits.web.exceptions.RequestURITooLarge(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

414 Request URI Too Large

Like 413 but for too long URLs.

code = 414

description = ‘<p>The length of the requested URL exceeds the capacity limit for this server. The request cannot be processed.</p>’

exception circuits.web.exceptions.UnsupportedMediaType(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

415 Unsupported Media Type

The status code returned if the server is unable to handle the media type the client transmitted.

code = 415

description = ‘<p>The server does not support the media type transmitted in the request.</p>’

exception circuits.web.exceptions.RangeUnsatisfiable(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

416 Range Unsatisfiable

The status code returned if the server is unable to satisfy the request range

code = 416

description = ‘<p>The server cannot satisfy the request range(s).</p>’

exception circuits.web.exceptions.InternalServerError(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

500 Internal Server Error

Raise if an internal server error occurred. This is a good fallback if an unknown error occurred in the dispatcher.

code = 500

description = ‘<p>The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an error in the application.</p>’

exception circuits.web.exceptions.NotImplemented(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

501 Not Implemented

2.5. API Documentation 119

circuits Documentation, Release 3.0

Raise if the application does not support the action requested by the browser.

code = 501

description = ‘<p>The server does not support the action requested by the browser.</p>’

exception circuits.web.exceptions.BadGateway(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

502 Bad Gateway

If you do proxying in your application you should return this status code if you received an invalid response
from the upstream server it accessed in attempting to fulfill the request.

code = 502

description = ‘<p>The proxy server received an invalid response from an upstream server.</p>’

exception circuits.web.exceptions.ServiceUnavailable(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

503 Service Unavailable

Status code you should return if a service is temporarily unavailable.

code = 503

description = ‘<p>The server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.</p>’

exception circuits.web.exceptions.Redirect(urls, status=None)
Bases: circuits.web.exceptions.HTTPException

code = 303

circuits.web.headers module

Headers Support

This module implements support for parsing and handling headers.

circuits.web.headers.header_elements(fieldname, fieldvalue)
Return a sorted HeaderElement list.

Returns a sorted HeaderElement list from a comma-separated header string.

class circuits.web.headers.HeaderElement(value, params=None)
Bases: object

An element (with parameters) from an HTTP header’s element list.

static parse(elementstr)
Transform ‘token;key=val’ to (‘token’, {‘key’: ‘val’}).

classmethod from_str(elementstr)
Construct an instance from a string of the form ‘token;key=val’.

class circuits.web.headers.AcceptElement(value, params=None)
Bases: circuits.web.headers.HeaderElement

An element (with parameters) from an Accept* header’s element list.

AcceptElement objects are comparable; the more-preferred object will be “less than” the less-preferred object.
They are also therefore sortable; if you sort a list of AcceptElement objects, they will be listed in priority order;
the most preferred value will be first. Yes, it should have been the other way around, but it’s too late to fix now.

120 Chapter 2. Documentation

circuits Documentation, Release 3.0

classmethod from_str(elementstr)

qvalue
The qvalue, or priority, of this value.

class circuits.web.headers.CaseInsensitiveDict(*args, **kwargs)
Bases: dict

A case-insensitive dict subclass.

Each key is changed on entry to str(key).title().

get(key, default=None)

update(E)

classmethod fromkeys(seq, value=None)

setdefault(key, x=None)

pop(key, default=None)

class circuits.web.headers.Headers(*args, **kwargs)
Bases: circuits.web.headers.CaseInsensitiveDict

elements(key)
Return a sorted list of HeaderElements for the given header.

get_all(name)
Return a list of all the values for the named field.

append(key, value)

add_header(_name, _value, **_params)
Extended header setting.

_name is the header field to add. keyword arguments can be used to set additional parameters for the
header field, with underscores converted to dashes. Normally the parameter will be added as key=”value”
unless value is None, in which case only the key will be added.

Example:

h.add_header(‘content-disposition’, ‘attachment’, filename=’bud.gif’)

Note that unlike the corresponding ‘email.Message’ method, this does not handle ‘(charset, language,
value)’ tuples: all values must be strings or None.

circuits.web.http module

Hyper Text Transfer Protocol

This module implements the server side Hyper Text Transfer Protocol or commonly known as HTTP.

class circuits.web.http.HTTP(server, encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

HTTP Protocol Component

Implements the HTTP server protocol and parses and processes incoming HTTP messages, creating and sending
an appropriate response.

The component handles Read events on its channel and collects the associated data until a complete HTTP
request has been received. It parses the request’s content and puts it in a Request object and creates a corre-
sponding Response object. Then it emits a Request event with these objects as arguments.

2.5. API Documentation 121

circuits Documentation, Release 3.0

The component defines several handlers that send a response back to the client.

channel = ‘web’

version

protocol

scheme

base

circuits.web.loggers module

Logger Component

This module implements Logger Components.

circuits.web.loggers.formattime()

class circuits.web.loggers.Logger(file=None, logger=None, **kwargs)
Bases: circuits.core.components.BaseComponent

channel = ‘web’

format = ‘%(h)s %(l)s %(u)s %(t)s “%(r)s” %(s)s %(b)s “%(f)s” “%(a)s”’

log_response(response_event, value)

log(response)

circuits.web.main module

Main

circutis.web Web Server and Testing Tool.

circuits.web.main.parse_options()

class circuits.web.main.Authentication(channel=’web’, realm=None, passwd=None)
Bases: circuits.core.components.Component

channel = ‘web’

realm = ‘Secure Area’

users = {‘admin’: ‘21232f297a57a5a743894a0e4a801fc3’}

request(event, request, response)

class circuits.web.main.HelloWorld(*args, **kwargs)
Bases: circuits.core.components.Component

initializes x; see x.__class__.__doc__ for signature

channel = ‘web’

request(request, response)

class circuits.web.main.Root(*args, **kwargs)
Bases: circuits.web.controllers.Controller

initializes x; see x.__class__.__doc__ for signature

hello(event, *args, **kwargs)

122 Chapter 2. Documentation

circuits Documentation, Release 3.0

circuits.web.main.select_poller(poller)

circuits.web.main.parse_bind(bind)

circuits.web.main.main()

circuits.web.processors module

circuits.web.processors.process_multipart(request, params)

circuits.web.processors.process_urlencoded(request, params, encoding=’utf-8’)

circuits.web.processors.process(request, params)

circuits.web.servers module

Web Servers

This module implements the several Web Server components.

class circuits.web.servers.BaseServer(bind, encoding=’utf-8’, secure=False, certfile=None,
channel=’web’)

Bases: circuits.core.components.BaseComponent

Create a Base Web Server

Create a Base Web Server (HTTP) bound to the IP Address / Port or UNIX Socket specified by the ‘bind’
parameter.

Variables server – Reference to underlying Server Component

Parameters bind (Instance of int, list, tuple or str) – IP Address / Port or
UNIX Socket to bind to.

The ‘bind’ parameter is quite flexible with what valid values it accepts.

If an int is passed, a TCPServer will be created. The Server will be bound to the Port given by the ‘bind’
argument and the bound interface will default (normally to “0.0.0.0”).

If a list or tuple is passed, a TCPServer will be created. The Server will be bound to the Port given by the 2nd
item in the ‘bind’ argument and the bound interface will be the 1st item.

If a str is passed and it contains the ‘:’ character, this is assumed to be a request to bind to an IP Address / Port.
A TCpServer will thus be created and the IP Address and Port will be determined by splitting the string given
by the ‘bind’ argument.

Otherwise if a str is passed and it does not contain the ‘:’ character, a file path is assumed and a UNIXServer is
created and bound to the file given by the ‘bind’ argument.

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

channel = ‘web’

host

port

secure

class circuits.web.servers.Server(bind, **kwargs)
Bases: circuits.web.servers.BaseServer

Create a Web Server

2.5. API Documentation 123

circuits Documentation, Release 3.0

Create a Web Server (HTTP) complete with the default Dispatcher to parse requests and posted form data
dispatching to appropriate Controller(s).

See: circuits.web.servers.BaseServer

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

class circuits.web.servers.FakeSock

getpeername()

class circuits.web.servers.StdinServer(encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

channel = ‘web’

host

port

secure

read(data)

write(sock, data)

circuits.web.sessions module

Session Components

This module implements Session Components that can be used to store and access persistent information.

circuits.web.sessions.who(request, encoding=’utf-8’)
Create a SHA1 Hash of the User’s IP Address and User-Agent

circuits.web.sessions.create_session(request)
Create a unique session id from the request

Returns a unique session using uuid4() and a sha1() hash of the users IP Address and User Agent in the
form of sid/who.

circuits.web.sessions.verify_session(request, sid)
Verify a User’s Session

This verifies the User’s Session by verifying the SHA1 Hash of the User’s IP Address and User-Agent match
the provided Session ID.

class circuits.web.sessions.Sessions(name=’circuits.session’, channel=’web’)
Bases: circuits.core.components.Component

channel = ‘web’

load(sid)

save(sid, data)
Save User Session Data for sid

request(request, response)

124 Chapter 2. Documentation

circuits Documentation, Release 3.0

circuits.web.tools module

Tools

This module implements tools used throughout circuits.web. These tools can also be used within Controlelrs and
request handlers.

circuits.web.tools.expires(request, response, secs=0, force=False)
Tool for influencing cache mechanisms using the ‘Expires’ header.

‘secs’ must be either an int or a datetime.timedelta, and indicates the number of seconds between response.time
and when the response should expire. The ‘Expires’ header will be set to (response.time + secs).

If ‘secs’ is zero, the ‘Expires’ header is set one year in the past, and the following “cache prevention” headers
are also set: - ‘Pragma’: ‘no-cache’ - ‘Cache-Control’: ‘no-cache, must-revalidate’

If ‘force’ is False (the default), the following headers are checked: ‘Etag’, ‘Last-Modified’, ‘Age’, ‘Expires’. If
any are already present, none of the above response headers are set.

circuits.web.tools.serve_file(request, response, path, type=None, disposition=None,
name=None)

Set status, headers, and body in order to serve the given file.

The Content-Type header will be set to the type arg, if provided. If not provided, the Content-Type will be
guessed by the file extension of the ‘path’ argument.

If disposition is not None, the Content-Disposition header will be set to “<disposition>; filename=<name>”. If
name is None, it will be set to the basename of path. If disposition is None, no Content-Disposition header will
be written.

circuits.web.tools.serve_download(request, response, path, name=None)
Serve ‘path’ as an application/x-download attachment.

circuits.web.tools.validate_etags(request, response, autotags=False)
Validate the current ETag against If-Match, If-None-Match headers.

If autotags is True, an ETag response-header value will be provided from an MD5 hash of the response body
(unless some other code has already provided an ETag header). If False (the default), the ETag will not be
automatic.

WARNING: the autotags feature is not designed for URL’s which allow methods other than GET. For example,
if a POST to the same URL returns no content, the automatic ETag will be incorrect, breaking a fundamental use
for entity tags in a possibly destructive fashion. Likewise, if you raise 304 Not Modified, the response body will
be empty, the ETag hash will be incorrect, and your application will break. See http://www.w3.org/Protocols/
rfc2616/rfc2616-sec14.html#sec14.24

circuits.web.tools.validate_since(request, response)
Validate the current Last-Modified against If-Modified-Since headers.

If no code has set the Last-Modified response header, then no validation will be performed.

circuits.web.tools.check_auth(request, response, realm, users, encrypt=None)
Check Authentication

If an Authorization header contains credentials, return True, else False.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable
returning a dict.

2.5. API Documentation 125

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24

circuits Documentation, Release 3.0

• encrypt (callable) – Callable used to encrypt the password returned from the user-
agent. if None it defaults to a md5 encryption.

circuits.web.tools.basic_auth(request, response, realm, users, encrypt=None)
Perform Basic Authentication

If auth fails, returns an Unauthorized error with a basic authentication header.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable
returning a dict.

• encrypt (callable) – Callable used to encrypt the password returned from the user-
agent. if None it defaults to a md5 encryption.

circuits.web.tools.digest_auth(request, response, realm, users)
Perform Digest Authentication

If auth fails, raise 401 with a digest authentication header.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable
returning a dict.

circuits.web.tools.gzip(response, level=4, mime_types=[’text/html’, ‘text/plain’])
Try to gzip the response body if Content-Type in mime_types.

response.headers[’Content-Type’] must be set to one of the values in the mime_types arg before calling this
function.

No compression is performed if any of the following hold:

• The client sends no Accept-Encoding request header

• No ‘gzip’ or ‘x-gzip’ is present in the Accept-Encoding header

• No ‘gzip’ or ‘x-gzip’ with a qvalue > 0 is present

• The ‘identity’ value is given with a qvalue > 0.

circuits.web.url module

This is a module for dealing with urls. In particular, sanitizing them.

circuits.web.url.parse_url(url, encoding=’utf-8’)
Parse the provided url string and return an URL object

class circuits.web.url.URL(scheme, host, port, path, params=’‘, query=’‘, fragment=’‘)
Bases: object

For more information on how and what we parse / sanitize: http://tools.ietf.org/html/rfc1808.html

The more up-to-date RFC is this one: http://www.ietf.org/rfc/rfc3986.txt

classmethod parse(url, encoding)
Parse the provided url, and return a URL instance

equiv(other)
Return true if this url is equivalent to another

126 Chapter 2. Documentation

http://tools.ietf.org/html/rfc1808.html
http://www.ietf.org/rfc/rfc3986.txt

circuits Documentation, Release 3.0

canonical()
Canonicalize this url. This includes reordering parameters and args to have a consistent ordering

defrag()
Remove the fragment from this url

deparam(params=None)
Strip any of the provided parameters out of the url

abspath()
Clear out any ‘..’ and excessive slashes from the path

lower()
Lowercase the hostname

sanitize()
A shortcut to abspath, escape and lowercase

escape()
Make sure that the path is correctly escaped

unescape()
Unescape the path

encode(encoding)
Return the url in an arbitrary encoding

relative(path, encoding=’utf-8’)
Evaluate the new path relative to the current url

punycode()
Convert to punycode hostname

unpunycode()
Convert to an unpunycoded hostname

absolute()
Return True if this is a fully-qualified URL with a hostname and everything

unicode()
Return a unicode version of this url

utf8()
Return a utf-8 version of this url

circuits.web.utils module

Utilities

This module implements utility functions.

circuits.web.utils.average(xs)

circuits.web.utils.variance(xs)

circuits.web.utils.stddev(xs)

circuits.web.utils.parse_body(request, response, params)

circuits.web.utils.parse_qs(query_string)→ dict
Build a params dictionary from a query_string. If keep_blank_values is True (the default), keep values that are
blank.

2.5. API Documentation 127

circuits Documentation, Release 3.0

circuits.web.utils.dictform(form)

circuits.web.utils.compress(body, compress_level)
Compress ‘body’ at the given compress_level.

circuits.web.utils.get_ranges(headervalue, content_length)
Return a list of (start, stop) indices from a Range header, or None.

Each (start, stop) tuple will be composed of two ints, which are suitable for use in a slicing operation. That is,
the header “Range: bytes=3-6”, if applied against a Python string, is requesting resource[3:7]. This function
will return the list [(3, 7)].

If this function returns an empty list, you should return HTTP 416.

class circuits.web.utils.IOrderedDict(*args, **kwds)
Bases: dict, _abcoll.MutableMapping

Dictionary that remembers insertion order with insensitive key

Initialize an ordered dictionary. Signature is the same as for regular dictionaries, but keyword arguments are not
recommended because their insertion order is arbitrary.

clear()→ None. Remove all items from od.

get(key, default=None)

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

keys()→ list of D’s keys

values()→ list of D’s values

items()→ list of D’s (key, value) pairs, as 2-tuples

popitem()→ (k, v), return and remove a (key, value) pair.
Pairs are returned in LIFO order if last is true or FIFO order if false.

copy()→ a shallow copy of od

classmethod fromkeys(S[, v])→ New ordered dictionary with keys from S
and values equal to v (which defaults to None).

circuits.web.utils.is_ssl_handshake(buf)
Detect an SSLv2 or SSLv3 handshake

circuits.web.wrappers module

Request/Response Wrappers

This module implements the Request and Response objects.

circuits.web.wrappers.file_generator(input, chunkSize=4096)

class circuits.web.wrappers.Host(ip, port, name=None)
Bases: object

An internet address.

128 Chapter 2. Documentation

circuits Documentation, Release 3.0

name should be the client’s host name. If not available (because no DNS lookup is performed), the IP address
should be used instead.

ip = ‘0.0.0.0’

port = 80

name = ‘unknown.tld’

class circuits.web.wrappers.HTTPStatus(status=200, reason=None)
Bases: object

status

reason

class circuits.web.wrappers.Request(sock, method=’GET’, scheme=’http’, path=’/’, protocol=(1,
1), qs=’‘, headers=None, server=None)

Bases: object

Creates a new Request object to hold information about a request.

Parameters

• sock (socket.socket) – The socket object of the request.

• method (str) – The requested method.

• scheme (str) – The requested scheme.

• path (str) – The requested path.

• protocol (str) – The requested protocol.

• qs (str) – The query string of the request.

initializes x; see x.__class__.__doc__ for signature

index = None

script_name = ‘’

login = None

handled = False

scheme = ‘http’

protocol = (1, 1)

server = None

Cvar A reference to the underlying server

remote = Host(‘’, 0, ‘’)

local = Host(‘127.0.0.1’, 80, ‘127.0.0.1’)

host = ‘’

class circuits.web.wrappers.Body
Bases: object

Response Body

class circuits.web.wrappers.Status
Bases: object

Response Status

2.5. API Documentation 129

circuits Documentation, Release 3.0

class circuits.web.wrappers.Response(sock, request)→ new Response object
Bases: object

A Response object that holds the response to send back to the client. This ensure that the correct data is sent in
the correct order.

initializes x; see x.__class__.__doc__ for signature

body
Response Body

status
Response Status

done = False

close = False

stream = False

chunked = False

prepare()

circuits.web.wsgi module

WSGI Components

This module implements WSGI Components.

circuits.web.wsgi.create_environ(errors, path, req)

class circuits.web.wsgi.Application(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = ‘web’

headerNames = {‘CONTENT_LENGTH’: ‘Content-Length’, ‘REMOTE_HOST’: ‘Remote-Host’, ‘CONTENT_TYPE’: ‘Content-Type’, ‘HTTP_CGI_AUTHORIZATION’: ‘Authorization’, ‘REMOTE_ADDR’: ‘Remote-Addr’}

init()

translateHeaders(environ)

getRequestResponse(environ)

response(event, response)

host

port

secure

class circuits.web.wsgi.Gateway(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = ‘web’

init(apps)

130 Chapter 2. Documentation

circuits Documentation, Release 3.0

Module contents

Circuits Library - Web

circuits.web contains the circuits full stack web server that is HTTP and WSGI compliant.

Submodules

circuits.six module

Utilities for writing code that runs on Python 2 and 3

circuits.six.byteindex(data, index)

circuits.six.iterbytes(data)

class circuits.six.MovedModule(name, old, new=None)
Bases: circuits.six._LazyDescr

class circuits.six.MovedAttribute(name, old_mod, new_mod, old_attr=None, new_attr=None)
Bases: circuits.six._LazyDescr

circuits.six.add_move(move)
Add an item to six.moves.

circuits.six.remove_move(name)
Remove item from six.moves.

circuits.six.create_bound_method(function, instance)

circuits.six.get_unbound_function(unbound)
Get the function out of a possibly unbound function

class circuits.six.Iterator
Bases: object

next()

circuits.six.iterkeys(d)
Return an iterator over the keys of a dictionary.

circuits.six.itervalues(d)
Return an iterator over the values of a dictionary.

circuits.six.iteritems(d)
Return an iterator over the (key, value) pairs of a dictionary.

circuits.six.b(s, encoding=’utf-8’)
Byte literal

circuits.six.u(s, encoding=’utf-8’)
Text literal

circuits.six.bytes_to_str(s)

circuits.six.reraise(tp, value, tb=None)
Reraise an exception.

circuits.six.exec_(code, globs=None, locs=None)
Execute code in a namespace.

circuits.six.print_(*args, **kwargs)
The new-style print function.

2.5. API Documentation 131

circuits Documentation, Release 3.0

circuits.six.with_metaclass(meta, base=<type ‘object’>)
Create a base class with a metaclass.

circuits.version module

Version Module

So we only have to maintain version information in one place!

Module contents

Lightweight Event driven and Asynchronous Application Framework

circuits is a Lightweight Event driven and Asynchronous Application Framework for the Python Programming
Language with a strong Component Architecture.

copyright CopyRight (C) 2004-2013 by James Mills

license MIT (See: LICENSE)

Developer Docs

So, you’d like to contribute to circuits in some way? Got a bug report? Having problems running the examples?
Having problems getting circuits working in your environment?

Excellent. Here’s what you need to know.

Development Introduction

Here’s how we do things in circuits...

Communication

• IRC Channel on the FreeNode IRC Network

• Developer Mailing List

• Issue Tracker

Note: If you are familiar with IRC and use your own IRC Client then connect to the FreeNode Network and /join
#circuits.

Standards

We use the following coding standard:

• pep8

We also lint our codebase with the following tools:

• pyflakes

132 Chapter 2. Documentation

http://www.python.org/
http://www.python.org/
http://webchat.freenode.net/?randomnick=1&channels=circuits&uio=d4
http://freenode.net
http://groups.google.com/group/circuits-dev
https://bitbucket.org/circuits/circuits/issues
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/pyflakes

circuits Documentation, Release 3.0

• pep8

• mccabe

Please ensure your Development IDE or Editor has the above linters and checkers in place and enabled.

Alternatively you can use the following command line tool:

• flake8

Tools

We use the following tools to develop circuits and share code:

• Code Sharing: Mercurial

• Code Hosting and Bug Reporting: BitBucket GitHub (Mirror Only)

• Issue Tracker: Issue Tracker

• Documentation Hosting: Read the Docs

• Package Hosting: Python Package Index (PyPi)

• Continuous Integration: Drone

Contributing to circuits

Here’s how you can contribute to circuits

Share your story

One of the best ways you can contribute to circuits is by using circuits. Share with us your story of how you’ve used
circuits to solve a problem or create a new software solution using the circuits framework and library of components.

Submitting Bug Reports

We welcome all bug reports. We do however prefer bug reports in a clear and concise form with repeatable steps. One
of the best ways you can report a bug to us is by writing a unit test (//similar to the ones in our tests//) so that we can
verify the bug, fix it and commit the fix along with the test.

To submit a bug report, please use: http://bitbucket.org/circuits/circuits/issues

Writing new tests

We’re not perfect, and we’re still writing more tests to ensure quality code. If you’d like to help, please Fork circuits,
write more tests that cover more of our code base and submit a Pull Request. Many Thanks!

Adding New Features

If you’d like to see a new feature added to circuits, then we’d like to hear about it~ We would like to see some
discussion around any new features as well as valid use-cases. To start the discussions off, please either:

• Chat to us on #circuits on the FreeNode IRC Network

or

2.6. Developer Docs 133

https://pypi.python.org/pypi/pep8
https://pypi.python.org/pypi/mccabe/0.2.1
https://pypi.python.org/pypi/flake8
http://mercurial.selenic.com/
https://bitbucket.org/circuits/circuits
https://github.com/circuits/circuits
https://bitbucket.org/circuits/circuits/issues
http://circuits.readthedocs.org
http://pypi.python.org/pypi/circuits
https://drone.io/bitbucket.org/circuits/circuits
http://bitbucket.org/circuits/circuits/issues
https://bitbucket.org/circuits/circuits/fork
https://bitbucket.org/circuits/circuits/pull-request/new
http://freenode.org

circuits Documentation, Release 3.0

• Submit a **New** Issue

Development Processes

We document all our internal development processes here so you know exactly how we work and what to expect. If
you find any issues or problems please let us know!

Software Development Life Cycle (SDLC)

We employ the use of the SCRUM Agile Process and use our Issue Tracker to track features, bugs, chores and releases.
If you wish to contribute to circuits, please familiarize yourself with SCRUM and BitBucket <https://bitbucket.org/>‘s
Issue Tracker.

Bug Reports

• New Bug Reports are submitted via: http://bitbucket.org/circuits/circuits/issues

• Confirmation and Discussion of all New Bug Reports.

• Once confirmed, a new Bug is raised in our Issue Tracker

• An appropriate milestone will be set (depending on current milestone’s schedule and resources)

• A unit test developed that demonstrates the bug’s failure.

• A fix developed that passes the unit test and breaks no others.

• A New Pull Request created with the fix.

This must contains: - A new or modified unit test. - A patch that fixes the bug ensuring all unit tests pass. - The
Change Log updated. - Appropriate documentation updated.

• The Pull Request is reviewed and approved by at least two other developers.

Feature Requests

• New Feature Requests are submitted via: http://bitbucket.org/circuits/circuits/issues

• Confirmation and Discussion of all New Feature Requests.

• Once confirmed, a new Feature is raised in our Issue Tracker

• An appropriate milestone will be set (depending on current milestone’s schedule and resources)

• A unit test developed that demonstrates the new feature.

• The new feature developed that passes the unit test and breaks no others.

• A New Pull Request created with the fix.

This must contains: - A new or modified unit test. - A patch that implements the new feature ensuring all unit
tests pass. - The Change Log updated. - Appropriate documentation updated.

• The Pull Request is reviewed and approved by at least two other developers.

134 Chapter 2. Documentation

http://bitbucket.org/circuits/circuits/issues
http://en.wikipedia.org/wiki/Scrum_(development)
https://bitbucket.org/circuits/circuits/issues
http://bitbucket.org/circuits/circuits/issues
https://bitbucket.org/circuits/circuits/issues
https://bitbucket.org/circuits/circuits/pull-request/new
https://bitbucket.org/circuits/circuits/src/tip/CHANGES.rst
https://bitbucket.org/circuits/circuits/pull-request
http://bitbucket.org/circuits/circuits/issues
https://bitbucket.org/circuits/circuits/issues
https://bitbucket.org/circuits/circuits/pull-request/new
https://bitbucket.org/circuits/circuits/src/tip/CHANGES.rst
https://bitbucket.org/circuits/circuits/pull-request

circuits Documentation, Release 3.0

Writing new Code

• Submit a New Issue

• Write your code.

• Use flake8 to ensure code quality.

• Run the tests:

$ tox

• Ensure any new or modified code does not break existing unit tests.

• Update any relevant doc strings or documentation.

• Update the Change Log updated.

• Submit a New Pull Request.

Running the Tests

To run the tests you will need the following installed:

• tox installed as well as

• pytest-cov

• pytest

All of these can be installed via easy_install or pip.

Please also ensure that you you have all supported versions of Python that circuits supports installed in your local
environment.

To run the tests:

$ tox

Development Standards

We use the following development standards:

Cyclomatic Complexity

• Code Complexity shall not exceed 10

See: Limiting Cyclomatic Complexity

Coding Style

• Code shall confirm to the PEP8 Style Guide.

Note: This includes the 79 character limit!

• Doc Strings shall confirm to the PEP257 Convention.

2.6. Developer Docs 135

https://bitbucket.org/circuits/circuits/issues/new
http://pypi.python.org/pypi/flake8
https://bitbucket.org/circuits/circuits/src/tip/CHANGES.rst
https://bitbucket.org/circuits/circuits/pull-request/new
http://codespeak.net/tox/
http://pypi.python.org/pypi/pytest-cov
http://pytest.org/latest/
http://en.wikipedia.org/wiki/Cyclomatic_complexity#Limiting_complexity_during_development
http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0257/

circuits Documentation, Release 3.0

Note: Arguments, Keyword Arguments, Return and Exceptions must be documented with the appropriate
Sphinx‘Python Domain <http://sphinx-doc.org/latest/domains.html#the-python-domain>‘_.

Revision History

• Commits shall be small tangible pieces of work. - Each commit must be concise and manageable. - Large
changes are to be done over smaller commits.

• There shall be no commit squashing.

• Rebase your changes as often as you can.

Unit Tests

• Every new feature and bug fix must be accompanied with a unit test. (The only exception to this are minor trivial
changes).

Change Log

• #94: Modified the circuits.web.Logger to use the response_success event.

• #98: Dockerized circuits. See: https://docker.io/

• #99: Added Digest Auth support to the circuits.web CLI Tool

• #103: Added the firing of a disconnect event for the WebSocketsDispatcher.

• #108: Improved server support for the IRC Protocol.

• #112: Improved Signal Handling

• #37: Fixed a typo in File

• #38: Guard against invalid headers. (circuits.web)

• #46: Set Content-Type header on response for errors. (circuits.web)

• #48: Allow event to be passed to the decorated function (the request handler) for circuits.web

• #45: Fixed use of cmp() and __cmp__() for Python 3 compatibility.

• #56: circuits.web HEAD request send response body web

• #62: Fix packaging and bump circuits 1.5.1 for @dsuch (Dariusz Suchojad) for Zato

• #53: WebSocketClient treating WebSocket data in same TCP segment as HTTP response as part the HTTP
response. web

• #67: web example jsontool is broken on python3 web

• #77: Uncaught exceptions Event collides with sockets and others core

• #81: “index” method not serving / web

• #76: Missing unit test for DNS lookup failures net

• #66: web examples jsonserializer broken web

• #59: circuits.web DoS in serve_file (remote denial of service) web

136 Chapter 2. Documentation

http://sphinx-doc.org/latest/domains.html#the-python-domain
https://bitbucket.org/circuits/circuits/issue/94
https://bitbucket.org/circuits/circuits/issue/98
https://docker.io/
https://bitbucket.org/circuits/circuits/issue/99
https://bitbucket.org/circuits/circuits/issue/103
https://bitbucket.org/circuits/circuits/issue/108
https://bitbucket.org/circuits/circuits/issue/112
https://bitbucket.org/circuits/circuits/issue/37
https://bitbucket.org/circuits/circuits/issue/38
https://bitbucket.org/circuits/circuits/issue/46
https://bitbucket.org/circuits/circuits/issue/48
https://bitbucket.org/circuits/circuits/issue/45
https://bitbucket.org/circuits/circuits/issue/56
https://bitbucket.org/circuits/circuits/issue/62
https://zato.io/
https://bitbucket.org/circuits/circuits/issue/53
https://bitbucket.org/circuits/circuits/issue/67
https://bitbucket.org/circuits/circuits/issue/77
https://bitbucket.org/circuits/circuits/issue/81
https://bitbucket.org/circuits/circuits/issue/76
https://bitbucket.org/circuits/circuits/issue/66
https://bitbucket.org/circuits/circuits/issue/59

circuits Documentation, Release 3.0

• #91: Call/Wait and specific instances of events

• #89: Class attribtues that reference methods cause duplicate event handlers core

• #47: Dispatcher does not fully respect optional arguments. web

• #97: Fixed tests.net.test_tcp.test_lookup_failure test for Windows

• #100: Fixed returned Content-Type in JSON-RPC Dispatcher.

• #102: Fixed minor bug with WebSocketsDispatcher causing superflusous connect() events from being fired.

• #104: Prevent other websockets sessions from closing.

• #106: Added __format__ method to circuits.web.wrappers.HTTPStatus.

• #107: Added __le__ and __ge__ methods to circuits.web.wrappers.HTTPStatus

• #109: Fixed Event.create() factory and metaclass.

• #111: Fixed broken Digest Auth Test for circuits.web

• #63: typos in documentation docs

• #60: meantion @handler decorator in tutorial docs

• #65: Update tutorial to match circuits 3.0 API(s) and Semantics docs

• #69: Merge #circuits-dev FreeNode Channel into #circuits

• #75: Document and show examples of using circuits.tools docs

• #70: Convention around method names of event handlers

• #72: Update Event Filtering section of Users Manual docs

• #73: Fix duplication in auto generated API Docs. docs

• #78: Migrate Change Log maintenance and build to Releases

• #71: Document the value_changed event docs

• #92: Update circuitsframework.com content docs

• #88: Document the implicit registration of components attached as class attributes docs

• #87: A rendered example of circuits.tools.graph(). docs

• #85: Migrate away from ShiningPanda

• #61: circuits.web documentation enhancements docs

• #86: Telnet Tutorial

• #95: Updated Developer Documentation with corrections and a new workflow.

Older Change Logs

For older Change Logs of previous versions of circuits please see the respective PyPi page(s):

• circuits-2.1.0

• circuits-2.0.1

• circuits-2.0.0

• circuits-1.6

• circuits-1.5

2.7. Change Log 137

https://bitbucket.org/circuits/circuits/issue/91
https://bitbucket.org/circuits/circuits/issue/89
https://bitbucket.org/circuits/circuits/issue/47
https://bitbucket.org/circuits/circuits/issue/97
https://bitbucket.org/circuits/circuits/issue/100
https://bitbucket.org/circuits/circuits/issue/102
https://bitbucket.org/circuits/circuits/issue/104
https://bitbucket.org/circuits/circuits/issue/106
https://bitbucket.org/circuits/circuits/issue/107
https://bitbucket.org/circuits/circuits/issue/109
https://bitbucket.org/circuits/circuits/issue/111
https://bitbucket.org/circuits/circuits/issue/63
https://bitbucket.org/circuits/circuits/issue/60
https://bitbucket.org/circuits/circuits/issue/65
https://bitbucket.org/circuits/circuits/issue/69
https://bitbucket.org/circuits/circuits/issue/75
https://bitbucket.org/circuits/circuits/issue/70
https://bitbucket.org/circuits/circuits/issue/72
https://bitbucket.org/circuits/circuits/issue/73
https://bitbucket.org/circuits/circuits/issue/78
https://bitbucket.org/circuits/circuits/issue/71
https://bitbucket.org/circuits/circuits/issue/92
https://bitbucket.org/circuits/circuits/issue/88
https://bitbucket.org/circuits/circuits/issue/87
https://bitbucket.org/circuits/circuits/issue/85
https://bitbucket.org/circuits/circuits/issue/61
https://bitbucket.org/circuits/circuits/issue/86
https://bitbucket.org/circuits/circuits/issue/95
http://pypi.python.org/pypi
http://pypi.python.org/pypi/circuits/2.1.0
http://pypi.python.org/pypi/circuits/2.0.1
http://pypi.python.org/pypi/circuits/2.0.0
http://pypi.python.org/pypi/circuits/1.6
http://pypi.python.org/pypi/circuits/1.5

circuits Documentation, Release 3.0

Road Map

Here’s a list of upcoming releases of circuits in order of “next release first”.

Each bullet point states a high level goal we’re trying to achieve for the release whilst the “Issues List” (linked to our
Issue Tracker) lists specific issues we’ve tagged with the respective milestone.

Note: At this stage we don’t have any good estimates for our milestones but we hope we can improve this with future
releases and start adding estimates here.

circuits 3.0

• Improved Documentation

• Improved Test Suite

• More regular release cycle

See also:

circuits 3.0 milestone

circuits 3.1

• Improved circuits.web

See also:

circuits 3.1 milestone

Contributors

circuits was originally designed, written and primarily maintained by James Mills (http://prologic.shortcircuit.net.au/).

The following users and developers have contributed to circuits:

• Alessio Deiana

• Dariusz Suchojad

• Tim Miller

• Holger Krekel

• Justin Giorgi

• Edwin Marshall

• Alex Mayfield

• Toni Alatalo

• Michael Lipp

Anyone not listed here (apologies as this list is taken directly from Mercurial’s churn command and output). We
appreciate any and all contributions to circuits.

138 Chapter 2. Documentation

https://bitbucket.org/circuits/circuits/issues?milestone=3.0&status=open&status=new
http://circuitsweb.com
https://bitbucket.org/circuits/circuits/issues?milestone=3.1&status=open&status=new
http://prologic.shortcircuit.net.au/

circuits Documentation, Release 3.0

Frequently Asked Questions

General

... What is circuits? circuits is an event-driven framework with a high focus on Component architectures making
your life as a software developer much easier. circuits allows you to write maintainable and scalable systems
easily

... Can I write networking applications with circuits? Yes absolutely. circuits comes with socket I/O components
for tcp, udp and unix sockets with asynchronous polling implementations for select, poll, epoll and kqueue.

... Can I integrate circuits with a GUI library? This is entirely possible. You will have to hook into the GUI’s main
loop.

... What are the core concepts in circuits? Components and Events. Components are maintainable reusable units of
behavior that communicate with other components via a powerful message passing system.

... How would you compare circuits to Twisted? Others have said that circuits is very elegant in terms of it’s usage.
circuits’ component architecture allows you to define clear interfaces between components while maintaining a
high level of scalability and maintainability.

... Can Components communicate with other processes? Yes. circuits implements currently component bridging
and nodes

... What platforms does circuits support? circuits currently supports Linux, FreeBSD, OSX and Windows and is
currently continually tested against Linux and Windows against Python versions 2.6, 2.7, 3.1 and 3.2

... Can circuits be used for concurrent or distributed programming? Yes. We also have plans to build more dis-
tributed components into circuits making distributing computing with circuits very trivial.

Got more questions?

• Send an email to our Mailing List.

• Talk to us online on the #circuits IRC Channel

Glossary

VCS Version Control System, what you use for versioning your source code

Hello

Download Source Code: hello.py:

Echo Server

Download Source Code: echoserver.py:

2.10. Frequently Asked Questions 139

http://groups.google.com/group/circuits-users
http://webchat.freenode.net/?randomnick=1&channels=circuits&uio=d4

circuits Documentation, Release 3.0

Hello Web

Download Source Code: helloweb.py:

More examples...

140 Chapter 2. Documentation

https://bitbucket.org/circuits/circuits/src/tip/examples/

CHAPTER 3

Indices and tables

• Index

• modindex

• search

• Glossary

141

circuits Documentation, Release 3.0

142 Chapter 3. Indices and tables

Python Module Index

c
circuits, 44
circuits.app, 55
circuits.app.daemon, 52
circuits.core, 69
circuits.core.bridge, 56
circuits.core.components, 22
circuits.core.debugger, 24
circuits.core.events, 58
circuits.core.handlers, 62
circuits.core.helpers, 62
circuits.core.loader, 63
circuits.core.manager, 30
circuits.core.pollers, 66
circuits.core.timers, 67
circuits.core.utils, 68
circuits.core.values, 31
circuits.core.workers, 68
circuits.io, 90
circuits.io.events, 76
circuits.io.file, 89
circuits.io.process, 89
circuits.io.serial, 89
circuits.net, 96
circuits.net.events, 90
circuits.net.sockets, 94
circuits.node, 98
circuits.node.client, 96
circuits.node.events, 96
circuits.node.node, 97
circuits.node.server, 97
circuits.node.utils, 98
circuits.protocols, 102
circuits.protocols.http, 98
circuits.protocols.irc, 100
circuits.protocols.line, 100
circuits.protocols.websocket, 101
circuits.six, 131
circuits.tools, 102

circuits.version, 132
circuits.web, 36
circuits.web.client, 110
circuits.web.constants, 111
circuits.web.controllers, 111
circuits.web.dispatchers, 106
circuits.web.dispatchers.dispatcher, 103
circuits.web.dispatchers.jsonrpc, 103
circuits.web.dispatchers.static, 104
circuits.web.dispatchers.virtualhosts,

104
circuits.web.dispatchers.xmlrpc, 105
circuits.web.errors, 112
circuits.web.events, 113
circuits.web.exceptions, 117
circuits.web.headers, 120
circuits.web.http, 121
circuits.web.loggers, 122
circuits.web.main, 122
circuits.web.parsers, 109
circuits.web.parsers.http, 106
circuits.web.parsers.multipart, 107
circuits.web.parsers.querystring, 109
circuits.web.processors, 123
circuits.web.servers, 123
circuits.web.sessions, 124
circuits.web.tools, 125
circuits.web.url, 126
circuits.web.utils, 127
circuits.web.websockets, 110
circuits.web.websockets.client, 109
circuits.web.websockets.dispatcher, 110
circuits.web.wrappers, 128
circuits.web.wsgi, 130

143

circuits Documentation, Release 3.0

144 Python Module Index

Index

A
absolute() (circuits.web.url.URL method), 127
abspath() (circuits.web.url.URL method), 127
AcceptElement (class in circuits.web.headers), 120
accessed (class in circuits.io.events), 86
add() (circuits.node.node.Node method), 97
add_header() (circuits.web.headers.Headers method), 121
add_move() (in module circuits.six), 131
addHandler() (circuits.core.Manager method), 74
addHandler() (circuits.core.manager.Manager method),

64
addReader() (circuits.core.pollers.BasePoller method), 66
addReader() (circuits.core.pollers.EPoll method), 67
addReader() (circuits.core.pollers.KQueue method), 67
addReader() (circuits.core.pollers.Poll method), 66
addWriter() (circuits.core.pollers.BasePoller method), 66
addWriter() (circuits.core.pollers.EPoll method), 67
addWriter() (circuits.core.pollers.KQueue method), 67
addWriter() (circuits.core.pollers.Poll method), 66
alert_done (circuits.core.Event attribute), 71
alert_done (circuits.core.events.Event attribute), 59
append() (circuits.web.headers.Headers method), 121
append() (circuits.web.parsers.multipart.MultiDict

method), 107
Application (class in circuits.web.wsgi), 130
ARRAY (circuits.web.parsers.querystring.QueryStringToken

attribute), 109
Authentication (class in circuits.web.main), 122
average() (in module circuits.web.utils), 127

B
b() (in module circuits.six), 131
BadGateway, 120
BadRequest, 117
base (circuits.web.http.HTTP attribute), 122
BaseComponent (class in circuits.core), 70
BaseComponent (class in circuits.core.components), 56
BaseController (class in circuits.web.controllers), 111
BasePoller (class in circuits.core.pollers), 66

BaseServer (class in circuits.web.servers), 123
basic_auth() (in module circuits.web.tools), 126
body (circuits.web.wrappers.Response attribute), 130
Body (class in circuits.web.wrappers), 129
Bridge (class in circuits.core), 72
Bridge (class in circuits.core.bridge), 56
broadcast (class in circuits.net.events), 92
broadcast() (circuits.net.sockets.UDPServer method), 95
byteindex() (in module circuits.six), 131
bytes_to_str() (in module circuits.six), 131

C
call() (circuits.core.Manager method), 74
call() (circuits.core.manager.Manager method), 65
callEvent() (circuits.core.Manager method), 74
callEvent() (circuits.core.manager.Manager method), 65
CallValue (class in circuits.core.manager), 63
cancel() (circuits.core.Event method), 71
cancel() (circuits.core.events.Event method), 59
canonical() (circuits.web.url.URL method), 126
CaseInsensitiveDict (class in circuits.web.headers), 121
channel (circuits.app.Daemon attribute), 55
channel (circuits.app.daemon.Daemon attribute), 55
channel (circuits.core.BaseComponent attribute), 70
channel (circuits.core.Bridge attribute), 72
channel (circuits.core.bridge.Bridge attribute), 56
channel (circuits.core.components.BaseComponent at-

tribute), 57
channel (circuits.core.loader.Loader attribute), 63
channel (circuits.core.pollers.BasePoller attribute), 66
channel (circuits.core.pollers.EPoll attribute), 67
channel (circuits.core.pollers.KQueue attribute), 67
channel (circuits.core.pollers.Poll attribute), 66
channel (circuits.core.pollers.Select attribute), 66
channel (circuits.core.Worker attribute), 72
channel (circuits.core.workers.Worker attribute), 69
channel (circuits.io.file.File attribute), 89
channel (circuits.io.process.Process attribute), 89
channel (circuits.io.serial.Serial attribute), 90
channel (circuits.net.sockets.Client attribute), 94

145

circuits Documentation, Release 3.0

channel (circuits.net.sockets.Server attribute), 94
channel (circuits.node.client.Client attribute), 96
channel (circuits.node.node.Node attribute), 97
channel (circuits.node.server.Server attribute), 97
channel (circuits.protocols.http.HTTP attribute), 100
channel (circuits.protocols.websocket.WebSocketCodec

attribute), 102
channel (circuits.web.client.Client attribute), 111
channel (circuits.web.controllers.BaseController at-

tribute), 111
channel (circuits.web.dispatchers.dispatcher.Dispatcher

attribute), 103
channel (circuits.web.dispatchers.jsonrpc.JSONRPC at-

tribute), 104
channel (circuits.web.dispatchers.static.Static attribute),

104
channel (circuits.web.dispatchers.virtualhosts.VirtualHosts

attribute), 105
channel (circuits.web.dispatchers.xmlrpc.XMLRPC at-

tribute), 105
channel (circuits.web.http.HTTP attribute), 122
channel (circuits.web.loggers.Logger attribute), 122
channel (circuits.web.main.Authentication attribute), 122
channel (circuits.web.main.HelloWorld attribute), 122
channel (circuits.web.servers.BaseServer attribute), 123
channel (circuits.web.servers.StdinServer attribute), 124
channel (circuits.web.sessions.Sessions attribute), 124
channel (circuits.web.websockets.client.WebSocketClient

attribute), 110
channel (circuits.web.websockets.dispatcher.WebSocketsDispatcher

attribute), 110
channel (circuits.web.wsgi.Application attribute), 130
channel (circuits.web.wsgi.Gateway attribute), 130
channels (circuits.core.Event attribute), 72
channels (circuits.core.events.Event attribute), 59
check_auth() (in module circuits.web.tools), 125
child() (circuits.core.Event method), 72
child() (circuits.core.events.Event method), 59
chunked (circuits.web.wrappers.Response attribute), 130
circuits (module), 44, 132
circuits.app (module), 55
circuits.app.daemon (module), 52
circuits.core (module), 69
circuits.core.bridge (module), 56
circuits.core.components (module), 22, 56
circuits.core.debugger (module), 24, 57
circuits.core.events (module), 58
circuits.core.handlers (module), 62
circuits.core.helpers (module), 62
circuits.core.loader (module), 63
circuits.core.manager (module), 30, 63
circuits.core.pollers (module), 66
circuits.core.timers (module), 67
circuits.core.utils (module), 68

circuits.core.values (module), 31, 68
circuits.core.workers (module), 68
circuits.io (module), 90
circuits.io.events (module), 76
circuits.io.file (module), 89
circuits.io.process (module), 89
circuits.io.serial (module), 89
circuits.net (module), 96
circuits.net.events (module), 90
circuits.net.sockets (module), 94
circuits.node (module), 98
circuits.node.client (module), 96
circuits.node.events (module), 96
circuits.node.node (module), 97
circuits.node.server (module), 97
circuits.node.utils (module), 98
circuits.protocols (module), 102
circuits.protocols.http (module), 98
circuits.protocols.irc (module), 100
circuits.protocols.line (module), 100
circuits.protocols.websocket (module), 101
circuits.six (module), 131
circuits.tools (module), 102
circuits.version (module), 132
circuits.web (module), 36, 131
circuits.web.client (module), 110
circuits.web.constants (module), 111
circuits.web.controllers (module), 111
circuits.web.dispatchers (module), 106
circuits.web.dispatchers.dispatcher (module), 103
circuits.web.dispatchers.jsonrpc (module), 103
circuits.web.dispatchers.static (module), 104
circuits.web.dispatchers.virtualhosts (module), 104
circuits.web.dispatchers.xmlrpc (module), 105
circuits.web.errors (module), 112
circuits.web.events (module), 113
circuits.web.exceptions (module), 117
circuits.web.headers (module), 120
circuits.web.http (module), 121
circuits.web.loggers (module), 122
circuits.web.main (module), 122
circuits.web.parsers (module), 109
circuits.web.parsers.http (module), 106
circuits.web.parsers.multipart (module), 107
circuits.web.parsers.querystring (module), 109
circuits.web.processors (module), 123
circuits.web.servers (module), 123
circuits.web.sessions (module), 124
circuits.web.tools (module), 125
circuits.web.url (module), 126
circuits.web.utils (module), 127
circuits.web.websockets (module), 110
circuits.web.websockets.client (module), 109
circuits.web.websockets.dispatcher (module), 110

146 Index

circuits Documentation, Release 3.0

circuits.web.wrappers (module), 128
circuits.web.wsgi (module), 130
clear() (circuits.web.utils.IOrderedDict method), 128
Client (class in circuits.net.sockets), 94
Client (class in circuits.node.client), 96
Client (class in circuits.web.client), 111
close (circuits.web.wrappers.Response attribute), 130
close (class in circuits.io.events), 78
close (class in circuits.net.events), 92
close() (circuits.io.file.File method), 89
close() (circuits.io.serial.Serial method), 90
close() (circuits.net.sockets.Client method), 94
close() (circuits.net.sockets.Server method), 95
close() (circuits.net.sockets.UDPServer method), 95
close() (circuits.node.client.Client method), 96
close() (circuits.web.client.Client method), 111
close() (circuits.web.websockets.client.WebSocketClient

method), 110
closed (circuits.io.file.File attribute), 89
closed (class in circuits.io.events), 81
closed (class in circuits.net.events), 93
code (circuits.web.errors.forbidden attribute), 113
code (circuits.web.errors.httperror attribute), 112
code (circuits.web.errors.notfound attribute), 113
code (circuits.web.errors.unauthorized attribute), 113
code (circuits.web.exceptions.BadGateway attribute), 120
code (circuits.web.exceptions.BadRequest attribute), 117
code (circuits.web.exceptions.Forbidden attribute), 117
code (circuits.web.exceptions.Gone attribute), 118
code (circuits.web.exceptions.HTTPException attribute),

117
code (circuits.web.exceptions.InternalServerError at-

tribute), 119
code (circuits.web.exceptions.LengthRequired attribute),

118
code (circuits.web.exceptions.MethodNotAllowed

attribute), 118
code (circuits.web.exceptions.NotAcceptable attribute),

118
code (circuits.web.exceptions.NotFound attribute), 117
code (circuits.web.exceptions.NotImplemented attribute),

120
code (circuits.web.exceptions.PreconditionFailed at-

tribute), 118
code (circuits.web.exceptions.RangeUnsatisfiable at-

tribute), 119
code (circuits.web.exceptions.Redirect attribute), 120
code (circuits.web.exceptions.RequestEntityTooLarge at-

tribute), 119
code (circuits.web.exceptions.RequestTimeout attribute),

118
code (circuits.web.exceptions.RequestURITooLarge at-

tribute), 119

code (circuits.web.exceptions.ServiceUnavailable at-
tribute), 120

code (circuits.web.exceptions.Unauthorized attribute),
117

code (circuits.web.exceptions.UnsupportedMediaType at-
tribute), 119

complete (circuits.core.components.prepare_unregister
attribute), 56

complete (circuits.core.Event attribute), 72
complete (circuits.core.events.Event attribute), 59
complete (circuits.web.events.request attribute), 114
complete (circuits.web.events.response attribute), 115
complete (circuits.web.events.stream attribute), 116
Component (class in circuits.core), 71
Component (class in circuits.core.components), 57
compress() (in module circuits.web.utils), 128
connect (class in circuits.net.events), 90
connect() (circuits.net.sockets.TCPClient method), 94
connect() (circuits.net.sockets.UNIXClient method), 94
connect() (circuits.node.client.Client method), 96
connect() (circuits.web.client.Client method), 111
connected (circuits.net.sockets.Client attribute), 94
connected (circuits.net.sockets.Server attribute), 95
connected (circuits.web.client.Client attribute), 111
connected (circuits.web.websockets.client.WebSocketClient

attribute), 110
connected (class in circuits.net.events), 91
contenttype (circuits.web.errors.httperror attribute), 112
Controller (class in circuits.web.controllers), 112
copy() (circuits.web.utils.IOrderedDict method), 128
copy_file() (in module circuits.web.parsers.multipart),

108
create() (circuits.core.Event class method), 72
create() (circuits.core.events.Event class method), 59
create_bound_method() (in module circuits.six), 131
create_environ() (in module circuits.web.wsgi), 130
create_session() (in module circuits.web.sessions), 124
created (class in circuits.io.events), 85

D
Daemon (class in circuits.app), 55
Daemon (class in circuits.app.daemon), 54
daemonize (class in circuits.app.daemon), 52
daemonize() (circuits.app.Daemon method), 55
daemonize() (circuits.app.daemon.Daemon method), 55
Debugger (class in circuits.core), 73
Debugger (class in circuits.core.debugger), 57
defrag() (circuits.web.url.URL method), 127
deleted (class in circuits.io.events), 86
deletepid (class in circuits.app.daemon), 53
deletepid() (circuits.app.Daemon method), 55
deletepid() (circuits.app.daemon.Daemon method), 55
deparam() (circuits.web.url.URL method), 127
deprecated() (in module circuits.tools), 102

Index 147

circuits Documentation, Release 3.0

description (circuits.web.errors.httperror attribute), 113
description (circuits.web.exceptions.BadGateway at-

tribute), 120
description (circuits.web.exceptions.BadRequest at-

tribute), 117
description (circuits.web.exceptions.Forbidden attribute),

117
description (circuits.web.exceptions.Gone attribute), 118
description (circuits.web.exceptions.HTTPException at-

tribute), 117
description (circuits.web.exceptions.InternalServerError

attribute), 119
description (circuits.web.exceptions.LengthRequired at-

tribute), 118
description (circuits.web.exceptions.NotAcceptable at-

tribute), 118
description (circuits.web.exceptions.NotFound attribute),

118
description (circuits.web.exceptions.NotImplemented at-

tribute), 120
description (circuits.web.exceptions.PreconditionFailed

attribute), 119
description (circuits.web.exceptions.RangeUnsatisfiable

attribute), 119
description (circuits.web.exceptions.RequestEntityTooLarge

attribute), 119
description (circuits.web.exceptions.RequestTimeout at-

tribute), 118
description (circuits.web.exceptions.RequestURITooLarge

attribute), 119
description (circuits.web.exceptions.ServiceUnavailable

attribute), 120
description (circuits.web.exceptions.Unauthorized at-

tribute), 117
description (circuits.web.exceptions.UnsupportedMediaType

attribute), 119
dictform() (in module circuits.web.utils), 127
digest_auth() (in module circuits.web.tools), 126
discard() (circuits.core.pollers.BasePoller method), 66
discard() (circuits.core.pollers.EPoll method), 67
discard() (circuits.core.pollers.KQueue method), 67
discard() (circuits.core.pollers.Poll method), 66
disconnect (class in circuits.net.events), 90
disconnected (class in circuits.net.events), 91
Dispatcher (class in circuits.web.dispatchers.dispatcher),

103
done (circuits.web.wrappers.Response attribute), 130
dump_event() (in module circuits.node.utils), 98
dump_value() (in module circuits.node.utils), 98

E
edges() (in module circuits.tools), 102
elements() (circuits.web.headers.Headers method), 121
encode() (circuits.web.url.URL method), 127

eof (class in circuits.io.events), 76
EPoll (class in circuits.core.pollers), 66
equiv() (circuits.web.url.URL method), 126
error (class in circuits.io.events), 79
error (class in circuits.net.events), 91
escape() (circuits.web.url.URL method), 127
Event (class in circuits.core), 71
Event (class in circuits.core.events), 58
events() (circuits.core.BaseComponent class method), 70
events() (circuits.core.components.BaseComponent class

method), 57
EventType (class in circuits.core.events), 58
exception (class in circuits.core.events), 59
ExceptionWrapper (class in circuits.core.manager), 63
exec_() (in module circuits.six), 131
execute() (circuits.web.parsers.http.HttpParser method),

107
expires() (circuits.web.controllers.BaseController

method), 112
expires() (in module circuits.web.tools), 125
expiry (circuits.core.Timer attribute), 73
expiry (circuits.core.timers.Timer attribute), 67
expose() (in module circuits.web.controllers), 111
exposeJSON() (in module circuits.web.controllers), 112
ExposeJSONMetaClass (class in cir-

cuits.web.controllers), 112
ExposeMetaClass (class in circuits.web.controllers), 111
extract() (circuits.core.manager.ExceptionWrapper

method), 63

F
failure (circuits.core.Event attribute), 72
failure (circuits.core.events.Event attribute), 59
failure (circuits.core.task attribute), 72
failure (circuits.core.workers.task attribute), 69
failure (circuits.web.events.request attribute), 114
failure (circuits.web.events.response attribute), 115
failure (circuits.web.events.stream attribute), 116
FakeSock (class in circuits.web.servers), 124
FallBackErrorHandler (class in circuits.core.helpers), 63
FallBackGenerator (class in circuits.core.helpers), 62
FallBackSignalHandler (class in circuits.core.helpers), 63
feed() (circuits.web.parsers.multipart.MultipartPart

method), 108
File (class in circuits.io.file), 89
file_generator() (in module circuits.web.wrappers), 128
filename (circuits.io.file.File attribute), 89
find_handlers() (in module cir-

cuits.web.dispatchers.dispatcher), 103
findchannel() (in module circuits.core.utils), 68
findcmp() (in module circuits.core.utils), 68
findroot() (in module circuits.core.utils), 68
findroot() (in module circuits.tools), 102
findtype() (in module circuits.core.utils), 68

148 Index

circuits Documentation, Release 3.0

finish_header() (circuits.web.parsers.multipart.MultipartPart
method), 108

fire() (circuits.core.Manager method), 74
fire() (circuits.core.manager.Manager method), 64
fireEvent() (circuits.core.Manager method), 74
fireEvent() (circuits.core.manager.Manager method), 64
flatten() (in module circuits.core.utils), 68
flush() (circuits.core.Manager method), 75
flush() (circuits.core.manager.Manager method), 65
flushEvents() (circuits.core.Manager method), 75
flushEvents() (circuits.core.manager.Manager method),

65
Forbidden, 117
forbidden (class in circuits.web.errors), 113
forbidden() (circuits.web.controllers.BaseController

method), 112
format (circuits.web.loggers.Logger attribute), 122
formattime() (in module circuits.web.loggers), 122
from_str() (circuits.web.headers.AcceptElement class

method), 120
from_str() (circuits.web.headers.HeaderElement class

method), 120
fromkeys() (circuits.web.headers.CaseInsensitiveDict

class method), 121
fromkeys() (circuits.web.utils.IOrderedDict class

method), 128

G
Gateway (class in circuits.web.wsgi), 130
generate_events (class in circuits.core.events), 61
get() (circuits.web.headers.CaseInsensitiveDict method),

121
get() (circuits.web.parsers.multipart.MultiDict method),

107
get() (circuits.web.parsers.multipart.MultipartParser

method), 108
get() (circuits.web.utils.IOrderedDict method), 128
get_all() (circuits.web.headers.Headers method), 121
get_all() (circuits.web.parsers.multipart.MultipartParser

method), 108
get_headers() (circuits.web.parsers.http.HttpParser

method), 106
get_method() (circuits.web.parsers.http.HttpParser

method), 106
get_path() (circuits.web.parsers.http.HttpParser method),

106
get_query_string() (circuits.web.parsers.http.HttpParser

method), 106
get_ranges() (in module circuits.web.utils), 128
get_scheme() (circuits.web.parsers.http.HttpParser

method), 106
get_status_code() (circuits.web.parsers.http.HttpParser

method), 106
get_unbound_function() (in module circuits.six), 131

get_url() (circuits.web.parsers.http.HttpParser method),
106

get_version() (circuits.web.parsers.http.HttpParser
method), 106

getall() (circuits.web.parsers.multipart.MultiDict
method), 107

getHandlers() (circuits.core.Manager method), 75
getHandlers() (circuits.core.manager.Manager method),

64
getpeername() (circuits.web.servers.FakeSock method),

124
getRequestResponse() (circuits.web.wsgi.Application

method), 130
getTarget() (circuits.core.pollers.BasePoller method), 66
getValue() (circuits.core.values.Value method), 68
Gone, 118
graph() (in module circuits.tools), 102
gzip() (in module circuits.web.tools), 126

H
handled (circuits.web.wrappers.Request attribute), 129
handler() (in module circuits.core), 69
handler() (in module circuits.core.handlers), 62
HandlerMetaClass (class in circuits.core.handlers), 62
handlers() (circuits.core.BaseComponent class method),

70
handlers() (circuits.core.components.BaseComponent

class method), 57
handles() (circuits.core.BaseComponent class method),

70
handles() (circuits.core.components.BaseComponent

class method), 57
header_elements() (in module circuits.web.headers), 120
header_quote() (in module cir-

cuits.web.parsers.multipart), 108
header_unquote() (in module cir-

cuits.web.parsers.multipart), 108
HeaderElement (class in circuits.web.headers), 120
headerNames (circuits.web.wsgi.Application attribute),

130
Headers (class in circuits.web.headers), 121
hello() (circuits.web.main.Root method), 122
HelloWorld (class in circuits.web.main), 122
host (circuits.net.sockets.Server attribute), 95
host (circuits.node.server.Server attribute), 98
host (circuits.web.servers.BaseServer attribute), 123
host (circuits.web.servers.StdinServer attribute), 124
host (circuits.web.wrappers.Request attribute), 129
host (circuits.web.wsgi.Application attribute), 130
Host (class in circuits.web.wrappers), 128
HTTP (class in circuits.protocols.http), 100
HTTP (class in circuits.web.http), 121
httperror (class in circuits.web.errors), 112
HTTPException, 110, 117

Index 149

circuits Documentation, Release 3.0

HttpParser (class in circuits.web.parsers.http), 106
HTTPStatus (class in circuits.web.wrappers), 129

I
ignore (circuits.core.Bridge attribute), 73
ignore (circuits.core.bridge.Bridge attribute), 56
IgnoreChannels (circuits.core.Debugger attribute), 73
IgnoreChannels (circuits.core.debugger.Debugger at-

tribute), 58
IgnoreEvents (circuits.core.Debugger attribute), 73
IgnoreEvents (circuits.core.debugger.Debugger attribute),

58
in_subtree() (circuits.core.components.prepare_unregister

method), 56
index (circuits.web.wrappers.Request attribute), 129
inform() (circuits.core.values.Value method), 68
init() (circuits.app.Daemon method), 55
init() (circuits.app.daemon.Daemon method), 55
init() (circuits.core.Bridge method), 73
init() (circuits.core.bridge.Bridge method), 56
init() (circuits.core.Worker method), 72
init() (circuits.core.workers.Worker method), 69
init() (circuits.io.file.File method), 89
init() (circuits.io.process.Process method), 89
init() (circuits.web.wsgi.Application method), 130
init() (circuits.web.wsgi.Gateway method), 130
inspect() (in module circuits.tools), 102
InternalServerError, 119
InvalidChunkSize, 106
InvalidHeader, 106
InvalidRequestLine, 106
IOrderedDict (class in circuits.web.utils), 128
ip (circuits.web.wrappers.Host attribute), 129
is_buffered() (circuits.web.parsers.multipart.MultipartPart

method), 108
is_chunked() (circuits.web.parsers.http.HttpParser

method), 107
is_headers_complete() (cir-

cuits.web.parsers.http.HttpParser method),
106

is_message_begin() (circuits.web.parsers.http.HttpParser
method), 106

is_message_complete() (cir-
cuits.web.parsers.http.HttpParser method),
107

is_partial_body() (circuits.web.parsers.http.HttpParser
method), 106

is_ssl_handshake() (in module circuits.web.utils), 128
is_upgrade() (circuits.web.parsers.http.HttpParser

method), 106
isReading() (circuits.core.pollers.BasePoller method), 66
isWriting() (circuits.core.pollers.BasePoller method), 66
items() (circuits.web.utils.IOrderedDict method), 128

iterallitems() (circuits.web.parsers.multipart.MultiDict
method), 107

Iterator (class in circuits.six), 131
iterbytes() (in module circuits.six), 131
iteritems() (in module circuits.six), 131
iterkeys() (in module circuits.six), 131
itervalues() (in module circuits.six), 131

J
join() (circuits.core.Manager method), 75
join() (circuits.core.manager.Manager method), 65
JSONController (class in circuits.web.controllers), 112
JSONRPC (class in circuits.web.dispatchers.jsonrpc), 104

K
KEY (circuits.web.parsers.querystring.QueryStringToken

attribute), 109
keys() (circuits.web.parsers.multipart.MultiDict method),

107
keys() (circuits.web.utils.IOrderedDict method), 128
kill() (circuits.io.process.Process method), 89
kill() (in module circuits.tools), 102
KQueue (class in circuits.core.pollers), 67

L
LengthRequired, 118
Line (class in circuits.protocols.line), 101
line (class in circuits.protocols.line), 100
load() (circuits.core.loader.Loader method), 63
load() (circuits.web.sessions.Sessions method), 124
load_event() (in module circuits.node.utils), 98
load_value() (in module circuits.node.utils), 98
Loader (class in circuits.core.loader), 63
local (circuits.web.wrappers.Request attribute), 129
lock (circuits.core.events.generate_events attribute), 61
log() (circuits.web.loggers.Logger method), 122
log_response() (circuits.web.loggers.Logger method),

122
Logger (class in circuits.web.loggers), 122
login (circuits.web.wrappers.Request attribute), 129
lower() (circuits.web.url.URL method), 127

M
main() (in module circuits.web.main), 123
Manager (class in circuits.core), 73
Manager (class in circuits.core.manager), 63
MethodNotAllowed, 118
mode (circuits.io.file.File attribute), 89
modified (class in circuits.io.events), 87
moved (class in circuits.io.events), 84
MovedAttribute (class in circuits.six), 131
MovedModule (class in circuits.six), 131
MultiDict (class in circuits.web.parsers.multipart), 107

150 Index

circuits Documentation, Release 3.0

MultipartError, 108
MultipartParser (class in circuits.web.parsers.multipart),

108
MultipartPart (class in circuits.web.parsers.multipart),

108

N
name (circuits.app.daemon.daemonize attribute), 53
name (circuits.app.daemon.deletepid attribute), 54
name (circuits.app.daemon.writepid attribute), 54
name (circuits.core.components.prepare_unregister at-

tribute), 56
name (circuits.core.Event attribute), 72
name (circuits.core.events.Event attribute), 59
name (circuits.core.events.exception attribute), 59
name (circuits.core.events.generate_events attribute), 61
name (circuits.core.events.registered attribute), 60
name (circuits.core.events.signal attribute), 60
name (circuits.core.events.started attribute), 59
name (circuits.core.events.stopped attribute), 60
name (circuits.core.events.unregistered attribute), 61
name (circuits.core.Manager attribute), 75
name (circuits.core.manager.Manager attribute), 64
name (circuits.core.task attribute), 72
name (circuits.core.workers.task attribute), 69
name (circuits.io.events.accessed attribute), 87
name (circuits.io.events.close attribute), 79
name (circuits.io.events.closed attribute), 82
name (circuits.io.events.created attribute), 86
name (circuits.io.events.deleted attribute), 86
name (circuits.io.events.eof attribute), 76
name (circuits.io.events.error attribute), 80
name (circuits.io.events.modified attribute), 88
name (circuits.io.events.moved attribute), 85
name (circuits.io.events.open attribute), 81
name (circuits.io.events.opened attribute), 81
name (circuits.io.events.read attribute), 78
name (circuits.io.events.ready attribute), 83
name (circuits.io.events.seek attribute), 77
name (circuits.io.events.started attribute), 83
name (circuits.io.events.stopped attribute), 84
name (circuits.io.events.unmounted attribute), 88
name (circuits.io.events.write attribute), 79
name (circuits.net.events.broadcast attribute), 92
name (circuits.net.events.close attribute), 93
name (circuits.net.events.closed attribute), 94
name (circuits.net.events.connect attribute), 90
name (circuits.net.events.connected attribute), 91
name (circuits.net.events.disconnect attribute), 91
name (circuits.net.events.disconnected attribute), 91
name (circuits.net.events.error attribute), 92
name (circuits.net.events.read attribute), 91
name (circuits.net.events.ready attribute), 93
name (circuits.net.events.write attribute), 92

name (circuits.node.events.packet attribute), 97
name (circuits.node.events.remote attribute), 97
name (circuits.protocols.http.request attribute), 99
name (circuits.protocols.http.response attribute), 99
name (circuits.protocols.line.line attribute), 101
name (circuits.web.client.request attribute), 111
name (circuits.web.dispatchers.jsonrpc.rpc attribute), 104
name (circuits.web.dispatchers.xmlrpc.rpc attribute), 105
name (circuits.web.errors.forbidden attribute), 113
name (circuits.web.errors.httperror attribute), 112
name (circuits.web.errors.notfound attribute), 113
name (circuits.web.errors.redirect attribute), 113
name (circuits.web.errors.unauthorized attribute), 113
name (circuits.web.events.request attribute), 114
name (circuits.web.events.response attribute), 115
name (circuits.web.events.stream attribute), 116
name (circuits.web.events.terminate attribute), 116
name (circuits.web.exceptions.HTTPException attribute),

117
name (circuits.web.wrappers.Host attribute), 129
next() (circuits.six.Iterator method), 131
Node (class in circuits.node.node), 97
NotAcceptable, 118
NotConnected, 110
NotFound, 117
notfound (class in circuits.web.errors), 113
notfound() (circuits.web.controllers.BaseController

method), 112
notify (circuits.core.Event attribute), 72
notify (circuits.core.events.Event attribute), 59
NotImplemented, 119

O
OBJECT (circuits.web.parsers.querystring.QueryStringToken

attribute), 109
on_started() (circuits.app.Daemon method), 55
on_started() (circuits.app.daemon.Daemon method), 55
open (class in circuits.io.events), 80
opened (class in circuits.io.events), 81

P
packet (class in circuits.node.events), 96
parent (circuits.core.Event attribute), 72
parent (circuits.core.events.Event attribute), 59
parse() (circuits.web.headers.HeaderElement static

method), 120
parse() (circuits.web.parsers.querystring.QueryStringParser

method), 109
parse() (circuits.web.url.URL class method), 126
parse_bind() (in module circuits.web.main), 123
parse_bind_parameter() (circuits.net.sockets.Client

method), 94
parse_bind_parameter() (circuits.net.sockets.Server

method), 95

Index 151

circuits Documentation, Release 3.0

parse_bind_parameter() (circuits.net.sockets.TCP6Client
method), 94

parse_bind_parameter() (circuits.net.sockets.TCP6Server
method), 95

parse_bind_parameter() (circuits.net.sockets.TCPServer
method), 95

parse_bind_parameter() (cir-
cuits.net.sockets.UDP6Server method), 95

parse_body() (in module circuits.web.utils), 127
parse_form_data() (in module cir-

cuits.web.parsers.multipart), 108
parse_ipv4_parameter() (in module circuits.net.sockets),

95
parse_ipv6_parameter() (in module circuits.net.sockets),

95
parse_options() (in module circuits.web.main), 122
parse_options_header() (in module cir-

cuits.web.parsers.multipart), 108
parse_qs() (in module circuits.web.utils), 127
parse_url() (in module circuits.web.client), 110
parse_url() (in module circuits.web.url), 126
parts() (circuits.web.parsers.multipart.MultipartParser

method), 108
pid (circuits.core.Manager attribute), 75
pid (circuits.core.manager.Manager attribute), 64
Pipe() (in module circuits.net.sockets), 95
Poll (class in circuits.core.pollers), 66
Poller (in module circuits.core.pollers), 67
pop() (circuits.web.headers.CaseInsensitiveDict method),

121
pop() (circuits.web.utils.IOrderedDict method), 128
popitem() (circuits.web.utils.IOrderedDict method), 128
port (circuits.net.sockets.Server attribute), 95
port (circuits.node.server.Server attribute), 98
port (circuits.web.servers.BaseServer attribute), 123
port (circuits.web.servers.StdinServer attribute), 124
port (circuits.web.wrappers.Host attribute), 129
port (circuits.web.wsgi.Application attribute), 130
PreconditionFailed, 118
prepare() (circuits.web.wrappers.Response method), 130
prepare_unregister (class in circuits.core.components), 56
print_() (in module circuits.six), 131
Process (class in circuits.io.process), 89
process() (circuits.web.parsers.querystring.QueryStringParser

method), 109
process() (in module circuits.web.processors), 123
process_multipart() (in module circuits.web.processors),

123
process_urlencoded() (in module cir-

cuits.web.processors), 123
processTask() (circuits.core.Manager method), 75
processTask() (circuits.core.manager.Manager method),

65
protocol (circuits.web.http.HTTP attribute), 122

protocol (circuits.web.wrappers.Request attribute), 129
punycode() (circuits.web.url.URL method), 127

Q
QueryStringParser (class in cir-

cuits.web.parsers.querystring), 109
QueryStringToken (class in cir-

cuits.web.parsers.querystring), 109
qvalue (circuits.web.headers.AcceptElement attribute),

121

R
RangeUnsatisfiable, 119
read (class in circuits.io.events), 77
read (class in circuits.net.events), 91
read() (circuits.protocols.http.ResponseObject method),

100
read() (circuits.web.servers.StdinServer method), 124
ready (class in circuits.io.events), 82
ready (class in circuits.net.events), 93
ready() (circuits.net.sockets.UNIXClient method), 94
realm (circuits.web.main.Authentication attribute), 122
reason (circuits.web.wrappers.HTTPStatus attribute), 129
recv_body() (circuits.web.parsers.http.HttpParser

method), 106
recv_body_into() (circuits.web.parsers.http.HttpParser

method), 106
Redirect, 120
redirect (class in circuits.web.errors), 113
redirect() (circuits.web.controllers.BaseController

method), 112
reduce_time_left() (circuits.core.events.generate_events

method), 61
register() (circuits.core.BaseComponent method), 70
register() (circuits.core.components.BaseComponent

method), 57
registerChild() (circuits.core.Manager method), 75
registerChild() (circuits.core.manager.Manager method),

64
registered (class in circuits.core.events), 60
registered() (circuits.app.Daemon method), 55
registered() (circuits.app.daemon.Daemon method), 55
registerTask() (circuits.core.Manager method), 75
registerTask() (circuits.core.manager.Manager method),

65
relative() (circuits.web.url.URL method), 127
remote (circuits.web.wrappers.Request attribute), 129
remote (class in circuits.node.events), 97
remove_move() (in module circuits.six), 131
removeHandler() (circuits.core.Manager method), 75
removeHandler() (circuits.core.manager.Manager

method), 64
removeReader() (circuits.core.pollers.BasePoller

method), 66

152 Index

circuits Documentation, Release 3.0

removeReader() (circuits.core.pollers.EPoll method), 67
removeReader() (circuits.core.pollers.KQueue method),

67
removeReader() (circuits.core.pollers.Poll method), 66
removeWriter() (circuits.core.pollers.BasePoller

method), 66
removeWriter() (circuits.core.pollers.EPoll method), 67
removeWriter() (circuits.core.pollers.KQueue method),

67
removeWriter() (circuits.core.pollers.Poll method), 66
replace() (circuits.web.parsers.multipart.MultiDict

method), 107
reprhandler() (in module circuits.core.handlers), 62
request (class in circuits.protocols.http), 98
request (class in circuits.web.client), 111
request (class in circuits.web.events), 113
Request (class in circuits.web.wrappers), 129
request() (circuits.web.client.Client method), 111
request() (circuits.web.main.Authentication method), 122
request() (circuits.web.main.HelloWorld method), 122
request() (circuits.web.sessions.Sessions method), 124
RequestEntityTooLarge, 119
RequestTimeout, 118
RequestURITooLarge, 119
reraise() (in module circuits.six), 131
reset() (circuits.core.Timer method), 73
reset() (circuits.core.timers.Timer method), 67
resolve_methods() (in module cir-

cuits.web.dispatchers.dispatcher), 103
resolve_path() (in module cir-

cuits.web.dispatchers.dispatcher), 103
response (circuits.web.client.Client attribute), 111
response (class in circuits.protocols.http), 99
response (class in circuits.web.events), 114
Response (class in circuits.web.wrappers), 129
response() (circuits.web.wsgi.Application method), 130
ResponseObject (class in circuits.protocols.http), 99
resume() (circuits.core.helpers.FallBackGenerator

method), 62
resume() (circuits.core.pollers.BasePoller method), 66
Root (class in circuits.web.main), 122
rpc (class in circuits.web.dispatchers.jsonrpc), 103
rpc (class in circuits.web.dispatchers.xmlrpc), 105
run() (circuits.core.Manager method), 75
run() (circuits.core.manager.Manager method), 65
running (circuits.core.Manager attribute), 75
running (circuits.core.manager.Manager attribute), 64

S
safeimport() (in module circuits.core.utils), 68
sanitize() (circuits.web.errors.httperror method), 113
sanitize() (circuits.web.url.URL method), 127
save() (circuits.web.sessions.Sessions method), 124

save_as() (circuits.web.parsers.multipart.MultipartPart
method), 108

scheme (circuits.web.http.HTTP attribute), 122
scheme (circuits.web.wrappers.Request attribute), 129
script_name (circuits.web.wrappers.Request attribute),

129
secure (circuits.web.servers.BaseServer attribute), 123
secure (circuits.web.servers.StdinServer attribute), 124
secure (circuits.web.wsgi.Application attribute), 130
seek (class in circuits.io.events), 76
seek() (circuits.io.file.File method), 89
Select (class in circuits.core.pollers), 66
select_poller() (in module circuits.web.main), 122
send() (circuits.core.Bridge method), 73
send() (circuits.core.bridge.Bridge method), 56
send() (circuits.node.client.Client method), 96
send() (circuits.node.server.Server method), 97
Serial (class in circuits.io.serial), 89
serve_download() (circuits.web.controllers.BaseController

method), 112
serve_download() (in module circuits.web.tools), 125
serve_file() (circuits.web.controllers.BaseController

method), 112
serve_file() (in module circuits.web.tools), 125
server (circuits.web.wrappers.Request attribute), 129
Server (class in circuits.net.sockets), 94
Server (class in circuits.node.server), 97
Server (class in circuits.web.servers), 123
ServiceUnavailable, 120
Sessions (class in circuits.web.sessions), 124
setdefault() (circuits.web.headers.CaseInsensitiveDict

method), 121
setdefault() (circuits.web.utils.IOrderedDict method), 128
setValue() (circuits.core.values.Value method), 68
should_keep_alive() (circuits.web.parsers.http.HttpParser

method), 107
signal (class in circuits.core.events), 60
signal() (circuits.io.process.Process method), 89
socket_family (circuits.net.sockets.TCP6Client attribute),

94
socket_family (circuits.net.sockets.TCP6Server at-

tribute), 95
socket_family (circuits.net.sockets.TCPClient attribute),

94
socket_family (circuits.net.sockets.TCPServer attribute),

95
socket_family (circuits.net.sockets.UDP6Server at-

tribute), 95
socket_family (circuits.net.sockets.UDPServer attribute),

95
splitLines() (in module circuits.protocols.line), 100
start() (circuits.core.Manager method), 75
start() (circuits.core.manager.Manager method), 65
start() (circuits.io.process.Process method), 89

Index 153

circuits Documentation, Release 3.0

started (class in circuits.core.events), 59
started (class in circuits.io.events), 83
Static (class in circuits.web.dispatchers.static), 104
status (circuits.io.process.Process attribute), 89
status (circuits.web.wrappers.HTTPStatus attribute), 129
status (circuits.web.wrappers.Response attribute), 130
Status (class in circuits.web.wrappers), 129
stddev() (in module circuits.web.utils), 127
StdinServer (class in circuits.web.servers), 124
stop() (circuits.core.Event method), 72
stop() (circuits.core.events.Event method), 59
stop() (circuits.core.Manager method), 75
stop() (circuits.core.manager.Manager method), 65
stop() (circuits.io.process.Process method), 89
stopped (class in circuits.core.events), 60
stopped (class in circuits.io.events), 84
stream (circuits.web.wrappers.Response attribute), 130
stream (class in circuits.web.events), 115
success (circuits.core.Event attribute), 72
success (circuits.core.events.Event attribute), 59
success (circuits.core.task attribute), 72
success (circuits.core.workers.task attribute), 69
success (circuits.web.events.request attribute), 114
success (circuits.web.events.response attribute), 115
success (circuits.web.events.stream attribute), 116

T
task (class in circuits.core), 72
task (class in circuits.core.workers), 69
TCP6Client (class in circuits.net.sockets), 94
TCP6Server (class in circuits.net.sockets), 95
TCPClient (class in circuits.net.sockets), 94
TCPServer (class in circuits.net.sockets), 95
terminate (class in circuits.web.events), 116
tick() (circuits.core.Manager method), 75
tick() (circuits.core.manager.Manager method), 65
time_left (circuits.core.events.generate_events attribute),

61
TimeoutError, 63, 75
Timer (class in circuits.core), 73
Timer (class in circuits.core.timers), 67
tob() (in module circuits.web.parsers.multipart), 107
tokens() (circuits.web.parsers.querystring.QueryStringParser

method), 109
traceback (circuits.web.exceptions.HTTPException at-

tribute), 117
translateHeaders() (circuits.web.wsgi.Application

method), 130
tryimport() (in module circuits.tools), 102

U
u() (in module circuits.six), 131
UDP6Client (in module circuits.net.sockets), 95
UDP6Server (class in circuits.net.sockets), 95

UDPClient (in module circuits.net.sockets), 95
UDPServer (class in circuits.net.sockets), 95
Unauthorized, 117
unauthorized (class in circuits.web.errors), 113
unescape() (circuits.web.url.URL method), 127
unicode() (circuits.web.url.URL method), 127
UnicodeError, 117
UNIXClient (class in circuits.net.sockets), 94
UNIXServer (class in circuits.net.sockets), 95
Unknown (class in circuits.core.handlers), 62
unmounted (class in circuits.io.events), 88
unpunycode() (circuits.web.url.URL method), 127
unregister() (circuits.core.BaseComponent method), 71
unregister() (circuits.core.components.BaseComponent

method), 57
unregister_pending (circuits.core.BaseComponent

attribute), 71
unregister_pending (cir-

cuits.core.components.BaseComponent at-
tribute), 57

unregisterChild() (circuits.core.Manager method), 75
unregisterChild() (circuits.core.manager.Manager

method), 64
unregistered (class in circuits.core.events), 60
unregisterTask() (circuits.core.Manager method), 75
unregisterTask() (circuits.core.manager.Manager

method), 65
UnregistrableError, 63
UnsupportedMediaType, 119
update() (circuits.web.headers.CaseInsensitiveDict

method), 121
update() (circuits.web.utils.IOrderedDict method), 128
uri (circuits.web.controllers.BaseController attribute),

111
URL (class in circuits.web.url), 126
users (circuits.web.main.Authentication attribute), 122
utf8() (circuits.web.url.URL method), 127

V
validate_etags() (in module circuits.web.tools), 125
validate_since() (in module circuits.web.tools), 125
value (circuits.core.values.Value attribute), 68
value (circuits.web.parsers.multipart.MultipartPart

attribute), 108
Value (class in circuits.core.values), 68
values() (circuits.web.utils.IOrderedDict method), 128
variance() (in module circuits.web.utils), 127
VCS, 139
verify_session() (in module circuits.web.sessions), 124
version (circuits.web.http.HTTP attribute), 122
VirtualHosts (class in cir-

cuits.web.dispatchers.virtualhosts), 104

154 Index

circuits Documentation, Release 3.0

W
wait() (circuits.core.Manager method), 75
wait() (circuits.core.manager.Manager method), 65
wait() (circuits.io.process.Process method), 89
waitEvent() (circuits.core.Manager method), 75
waitEvent() (circuits.core.manager.Manager method), 65
waitingHandlers (circuits.core.Event attribute), 72
waitingHandlers (circuits.core.events.Event attribute), 59
walk() (in module circuits.tools), 102
WebSocketClient (class in cir-

cuits.web.websockets.client), 109
WebSocketCodec (class in circuits.protocols.websocket),

101
WebSocketsDispatcher (class in cir-

cuits.web.websockets.dispatcher), 110
who() (in module circuits.web.sessions), 124
with_metaclass() (in module circuits.six), 132
Worker (class in circuits.core), 72
Worker (class in circuits.core.workers), 69
write (class in circuits.io.events), 79
write (class in circuits.net.events), 92
write() (circuits.io.file.File method), 89
write() (circuits.io.process.Process method), 89
write() (circuits.io.serial.Serial method), 90
write() (circuits.net.sockets.Client method), 94
write() (circuits.net.sockets.Server method), 95
write() (circuits.net.sockets.UDPServer method), 95
write() (circuits.web.client.Client method), 111
write() (circuits.web.servers.StdinServer method), 124
write_body() (circuits.web.parsers.multipart.MultipartPart

method), 108
write_header() (circuits.web.parsers.multipart.MultipartPart

method), 108
writepid (class in circuits.app.daemon), 54
writepid() (circuits.app.Daemon method), 55
writepid() (circuits.app.daemon.Daemon method), 55

X
XMLRPC (class in circuits.web.dispatchers.xmlrpc), 105

Index 155

	About
	Documentation
	Indices and tables
	Python Module Index

