
circuits Documentation
Release 3.2.2

James Mills

January 03, 2023

Contents

1 About 3

2 Documentation 9

3 Indices and tables 153

Python Module Index 155

Index 157

i

ii

circuits Documentation, Release 3.2.2

Release 3.2.2

Date January 03, 2023

Contents 1

circuits Documentation, Release 3.2.2

2 Contents

CHAPTER 1

About

circuits is a Lightweight Event driven and Asynchronous Application Framework for the Python Programming
Language with a strong Component Architecture.

circuits also includes a lightweight, high performance and scalable HTTP/WSGI compliant web server as well as
various I/O and Networking components.

• Website

• Downloads

• Documentation

Got questions?

• Ask a Question (Tag it: circuits-framework)

1.1 Examples

1.1.1 Hello

1 #!/usr/bin/env python
2

3 """circuits Hello World"""
4

5 from circuits import Component, Event
6

7

8 class hello(Event):
9

10 """hello Event"""

(continues on next page)

3

https://github.com/circuits/circuits/actions/workflows/python-app.yml
https://codecov.io/gh/circuits/circuits
http://www.python.org/
http://www.python.org/
http://circuitsframework.com/
https://github.com/circuits/circuits/releases
http://circuits.readthedocs.org/en/latest/
http://stackoverflow.com/questions/ask

circuits Documentation, Release 3.2.2

(continued from previous page)

11

12

13 class App(Component):
14

15 def hello(self):
16 """Hello Event Handler"""
17

18 print("Hello World!")
19

20 def started(self, component):
21 """Started Event Handler
22

23 This is fired internally when your application starts up and can be used to
24 trigger events that only occur once during startup.
25 """
26

27 self.fire(hello()) # Fire hello Event
28

29 raise SystemExit(0) # Terminate the Application
30

31 App().run()

Download Source Code: hello.py:

1.1.2 Echo Server

1 #!/usr/bin/env python
2

3 """Simple TCP Echo Server
4

5 This example shows how you can create a simple TCP Server (an Echo Service)
6 utilizing the builtin Socket Components that the circuits library ships with.
7 """
8

9 from circuits import Debugger, handler
10 from circuits.net.sockets import TCPServer
11

12

13 class EchoServer(TCPServer):
14

15 @handler("read")
16 def on_read(self, sock, data):
17 """Read Event Handler
18

19 This is fired by the underlying Socket Component when there has been
20 new data read from the connected client.
21

22 ..note :: By simply returning, client/server socket components listen
23 to ValueChagned events (feedback) to determine if a handler
24 returned some data and fires a subsequent Write event with
25 the value returned.
26 """
27

28 return data
29

(continues on next page)

4 Chapter 1. About

circuits Documentation, Release 3.2.2

(continued from previous page)

30 # Start and "run" the system.
31 # Bind to port 0.0.0.0:8000
32 app = EchoServer(("0.0.0.0", 8000))
33 Debugger().register(app)
34 app.run()

Download Source Code: echoserver.py:

1.1.3 Hello Web

1 #!/usr/bin/env python
2

3 from circuits.web import Controller, Server
4

5

6 class Root(Controller):
7

8 def index(self):
9 """Index Request Handler

10

11 Controller(s) expose implicitly methods as request handlers.
12 Request Handlers can still be customized by using the ``@expose``
13 decorator. For example exposing as a different path.
14 """
15

16 return "Hello World!"
17

18 app = Server(("0.0.0.0", 8000))
19 Root().register(app)
20 app.run()

Download Source Code: helloweb.py:

More examples. . .

1.2 Features

• event driven

• concurrency support

• component architecture

• asynchronous I/O components

• no required external dependencies

• full featured web framework (circuits.web)

• coroutine based synchronization primitives

1.3 Requirements

• circuits has no dependencies beyond the Python Standard Library.

1.2. Features 5

https://github.com/circuits/circuits/tree/master/examples/
http://docs.python.org/library/

circuits Documentation, Release 3.2.2

1.4 Supported Platforms

• Linux, FreeBSD, Mac OS X, Windows

• Python 2.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10

• pypy (the newer the better)

1.5 Installation

The simplest and recommended way to install circuits is with pip. You may install the latest stable release from PyPI
with pip:

$ pip install circuits

If you do not have pip, you may use easy_install:

$ easy_install circuits

Alternatively, you may download the source package from the PyPi or the Downloads extract it and install using:

$ python setup.py install

Note: You can install the development version via pip install circuits==dev.

1.6 License

circuits is licensed under the MIT License.

1.7 Feedback

We welcome any questions or feedback about bugs and suggestions on how to improve circuits.

Let us know what you think about circuits. @pythoncircuits.

Do you have suggestions for improvement? Then please Create an Issue with details of what you would like to see.
I’ll take a look at it and work with you to either incorporate the idea or find a better solution.

1.8 Community

There are also several places you can reach out to the circuits community:

• Mailing List

• Google+ Group

• #circuits IRC Channel on the Libera.Chat IRC Network

• Ask a Question on Stackoverflow (Tag it: circuits-framework)

6 Chapter 1. About

http://pypi.python.org/pypi/circuits
https://github.com/circuits/circuits/releases
https://github.com/circuits/circuits/archive/master.zip#egg=circuits-dev
http://www.opensource.org/licenses/mit-license.php
http://twitter.com/pythoncircuits
https://github.com/circuits/circuits/issues/new
http://groups.google.com/group/circuits-users
https://plus.google.com/communities/107775112577294599973
https://web.libera.chat/#circuits
https://libera.chat
http://stackoverflow.com/questions/ask
http://stackoverflow.com/

circuits Documentation, Release 3.2.2

1.9 Disclaimer

Whilst I (James Mills) continue to contribute and maintain the circuits project I do not represent the interests or
business of my employer Facebook Inc. The contributions I make are of my own free time and have no bearing or
relevance to Facebook Inc.

1.9. Disclaimer 7

circuits Documentation, Release 3.2.2

8 Chapter 1. About

CHAPTER 2

Documentation

2.1 Getting Started

2.1.1 Quick Start Guide

The easiest way to download and install circuits is to use the pip command:

$ pip install circuits

Now that you have successfully downloaded and installed circuits, let’s test that circuits is properly installed and
working.

First, let’s check the installed version:

>>> import circuits
>>> print circuits.__version__

This should output:

Try some of the examples in the examples/ directory shipped with the distribution.

Have fun :)

2.1.2 Downloading

Latest Stable Release

The latest stable releases can be downloaded from the Releases page (specifically the Tags tab).

Latest Development Source Code

We use Git for source control and code sharing.

9

http://pypi.python.org/pypi/pip
https://github.com/circuits/circuits/releases
https://git-scm.com/

circuits Documentation, Release 3.2.2

The latest development branch can be cloned using the following command:

$ git clone https://github.com/circuits/circuits.git

For further instructions on how to use Git, please refer to the Git Website.

2.1.3 Installing

Installing from a Source Package

If you have downloaded a source archive, this applies to you.

$ python setup.py install

For other installation options see:

$ python setup.py --help install

Installing from the Development Repository

If you have cloned the source code repository, this applies to you.

If you have cloned the development repository, it is recommended that you use setuptools and use the following
command:

$ python setup.py develop

This will allow you to regularly update your copy of the circuits development repository by simply performing the
following in the circuits working directory:

$ hg pull -u

Note: You do not need to reinstall if you have installed with setuptools via the circuits repository and used setuptools
to install in “develop” mode.

2.1.4 Requirements and Dependencies

• circuits has no required dependencies beyond the Python Standard Library.

• Python: >= 2.7 or pypy >= 2.0

Supported Platforms Linux, FreeBSD, Mac OS X, Windows

Supported Python Versions 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10

Supported pypy Versions 2.0

Other Optional Dependencies

These dependencies are not strictly required and only add additional features.

• pydot – For rendering component graphs of an application.

10 Chapter 2. Documentation

https://git-scm.com/
http://docs.python.org/library/
http://pypi.python.org/pypi/pydot/

circuits Documentation, Release 3.2.2

• pyinotify – For asynchronous file system event notifications and the circuits.io.notify module.

2.2 circuits Tutorials

2.2.1 Tutorial

Overview

Welcome to the circuits tutorial. This 5-minute tutorial will guide you through the basic concepts of circuits. The
goal is to introduce new concepts incrementally with walk-through examples that you can try out! By the time you’ve
finished, you should have a good basic understanding of circuits, how it feels and where to go from there.

The Component

First up, let’s show how you can use the Component and run it in a very simple application.

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5 Component().run()

Download 001.py

Okay so that’s pretty boring as it doesn’t do very much! But that’s okay. . . Read on!

Let’s try to create our own custom Component called MyComponent. This is done using normal Python subclassing.

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5

6 class MyComponent(Component):
7

8 """My Component"""
9

10 MyComponent().run()

Download 002.py

Okay, so this still isn’t very useful! But at least we can create custom components with the behavior we want.

Let’s move on to something more interesting. . .

Note: Component(s) in circuits are what sets circuits apart from other Asynchronous or Concurrent Application
Frameworks. Components(s) are used as building blocks from simple behaviors to complex ones (composition of
simpler components to form more complex ones).

Event Handlers

Let’s now extend our little example to say “Hello World!” when it’s started.

2.2. circuits Tutorials 11

http://pypi.python.org/pypi/pyinotify

circuits Documentation, Release 3.2.2

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5

6 class MyComponent(Component):
7

8 def started(self, *args):
9 print("Hello World!")

10

11 MyComponent().run()

Download 003.py

Here we’ve created a simple Event Handler that listens for the started Event.

Note: Methods defined in a custom subclassed Component are automatically turned into Event Handlers. The
only exception to this are methods prefixed with an underscore (_).

Note: If you do not want this automatic behavior, inherit from BaseComponent instead which means you will
have to use the ~circuits.core.handlers.handler decorator to define your Event Handlers.

Running this we get:

Hello World!

Alright! We have something slightly more useful! Whoohoo it says hello!

Note: Press ^C (CTRL + C) to exit.

Registering Components

So now that we’ve learned how to use a Component, create a custom Component and create simple Event Handlers,
let’s try something a bit more complex by creating a complex component made up of two simpler ones.

Note: We call this Component Composition which is the very essence of the circuits Application Framework.

Let’s create two components:

• Bob

• Fred

1 #!/usr/bin/env python
2

3 from circuits import Component
4

5

6 class Bob(Component):
7

(continues on next page)

12 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

(continued from previous page)

8 def started(self, *args):
9 print("Hello I'm Bob!")

10

11

12 class Fred(Component):
13

14 def started(self, *args):
15 print("Hello I'm Fred!")
16

17 (Bob() + Fred()).run()

Download 004.py

Notice the way we register the two components Bob and Fred together ? Don’t worry if this doesn’t make sense right
now. Think of it as putting two components together and plugging them into a circuit board.

Running this example produces the following result:

Hello I'm Bob!
Hello I'm Fred!

Cool! We have two components that each do something and print a simple message on the screen!

Complex Components

Now, what if we wanted to create a Complex Component? Let’s say we wanted to create a new Component made up
of two other smaller components?

We can do this by simply registering components to a Complex Component during initialization.

Note: This is also called Component Composition and avoids the classical Diamond problem of Multiple Inheri-
tance. In circuits we do not use Multiple Inheritance to create Complex Components made up of two or more base
classes of components, we instead compose them together via registration.

1 #!/usr/bin/env python
2

3 from circuits import Component
4 from circuits.tools import graph
5

6

7 class Pound(Component):
8

9 def __init__(self):
10 super(Pound, self).__init__()
11

12 self.bob = Bob().register(self)
13 self.fred = Fred().register(self)
14

15 def started(self, *args):
16 print(graph(self.root))
17

18

19 class Bob(Component):
20

(continues on next page)

2.2. circuits Tutorials 13

http://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

circuits Documentation, Release 3.2.2

(continued from previous page)

21 def started(self, *args):
22 print("Hello I'm Bob!")
23

24

25 class Fred(Component):
26

27 def started(self, *args):
28 print("Hello I'm Fred!")
29

30 Pound().run()

Download 005.py

So now Pound is a Component that consists of two other components registered to it: Bob and Fred

The output of this is identical to the previous:

* <Pound/* 3391:MainThread (queued=0, channels=1, handlers=3) [R]>

* <Bob/* 3391:MainThread (queued=0, channels=1, handlers=1) [S]>

* <Fred/* 3391:MainThread (queued=0, channels=1, handlers=1) [S]>
Hello I'm Bob!
Hello I'm Fred!

The only difference is that Bob and Fred are now part of a more Complex Component called Pound. This can be
illustrated by the following diagram:

Pound-1344

Bob-9b0c Fred-e98a

Note: The extra lines in the above output are an ASCII representation of the above graph (produced by pydot +
graphviz).

Cool :-)

Component Inheritance

Since circuits is a framework written for the Python Programming Language it naturally inherits properties of Object
Orientated Programming (OOP) – such as inheritance.

So let’s take our Bob and Fred components and create a Base Component called Dog and modify our two dogs (Bob
and Fred) to subclass this.

14 Chapter 2. Documentation

http://www.python.org/

circuits Documentation, Release 3.2.2

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5

6 class woof(Event):
7

8 """woof Event"""
9

10

11 class Pound(Component):
12

13 def __init__(self):
14 super(Pound, self).__init__()
15

16 self.bob = Bob().register(self)
17 self.fred = Fred().register(self)
18

19 def started(self, *args):
20 self.fire(woof())
21

22

23 class Dog(Component):
24

25 def woof(self):
26 print("Woof! I'm %s!" % self.name)
27

28

29 class Bob(Dog):
30

31 """Bob"""
32

33

34 class Fred(Dog):
35

36 """Fred"""
37

38 Pound().run()

Download 006.py

Now let’s try to run this and see what happens:

Woof! I'm Bob!
Woof! I'm Fred!

So both dogs barked! Hmmm

Component Channels

What if we only want one of our dogs to bark? How do we do this without causing the other one to bark as well?

Easy! Use a separate channel like so:

1 #!/usr/bin/env python
2

3 from circuits import Component, Event

(continues on next page)

2.2. circuits Tutorials 15

circuits Documentation, Release 3.2.2

(continued from previous page)

4

5

6 class woof(Event):
7

8 """woof Event"""
9

10

11 class Pound(Component):
12

13 def __init__(self):
14 super(Pound, self).__init__()
15

16 self.bob = Bob().register(self)
17 self.fred = Fred().register(self)
18

19 def started(self, *args):
20 self.fire(woof(), self.bob)
21

22

23 class Dog(Component):
24

25 def woof(self):
26 print("Woof! I'm %s!" % self.name)
27

28

29 class Bob(Dog):
30

31 """Bob"""
32

33 channel = "bob"
34

35

36 class Fred(Dog):
37

38 """Fred"""
39

40 channel = "fred"
41

42 Pound().run()

Download 007.py

Note: Events can be fired with either the .fire(...) or .fireEvent(...) method.

If you run this, you’ll get:

Woof! I'm Bob!

Event Objects

So far in our tutorial we have been defining an Event Handler for a builtin Event called started. What if we wanted
to define our own Event Handlers and our own Events? You’ve already seen how easy it is to create a new Event
Handler by simply defining a normal Python method on a Component.

Defining your own Events helps with documentation and testing and makes things a little easier.

16 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

Example:

class MyEvent(Event):
"""MyEvent"""

So here’s our example where we’ll define a new Event called Bark and make our Dog fire a Bark event when our
application starts up.

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5

6 class bark(Event):
7

8 """bark Event"""
9

10

11 class Pound(Component):
12

13 def __init__(self):
14 super(Pound, self).__init__()
15

16 self.bob = Bob().register(self)
17 self.fred = Fred().register(self)
18

19

20 class Dog(Component):
21

22 def started(self, *args):
23 self.fire(bark())
24

25 def bark(self):
26 print("Woof! I'm %s!" % self.name)
27

28

29 class Bob(Dog):
30

31 """Bob"""
32

33 channel = "bob"
34

35

36 class Fred(Dog):
37

38 """Fred"""
39

40 channel = "fred"
41

42 Pound().run()

Download 008.py

If you run this, you’ll get:

Woof! I'm Bob!
Woof! I'm Fred!

2.2. circuits Tutorials 17

circuits Documentation, Release 3.2.2

The Debugger

Lastly. . .

Asynchronous programming has many advantages but can be a little harder to write and follow. A silently caught
exception in an Event Handler, or an Event that never gets fired, or any number of other weird things can cause your
application to fail and leave you scratching your head.

Fortunately circuits comes with a Debugger Component to help you keep track of what’s going on in your applica-
tion, and allows you to tell what your application is doing.

Let’s say that we defined out bark Event Handler in our Dog Component as follows:

def bark(self):
print("Woof! I'm %s!" % name)

Now clearly there is no such variable as name in the local scope.

For reference here’s the entire example. . .

1 #!/usr/bin/env python
2

3 from circuits import Component, Event
4

5

6 class bark(Event):
7

8 """bark Event"""
9

10

11 class Pound(Component):
12

13 def __init__(self):
14 super(Pound, self).__init__()
15

16 self.bob = Bob().register(self)
17 self.fred = Fred().register(self)
18

19

20 class Dog(Component):
21

22 def started(self, *args):
23 self.fire(bark())
24

25 def bark(self):
26 print("Woof! I'm %s!" % name) # noqa
27

28

29 class Bob(Dog):
30

31 """Bob"""
32

33 channel = "bob"
34

35

36 class Fred(Dog):
37

38 """Fred"""
39

(continues on next page)

18 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

(continued from previous page)

40 channel = "fred"
41

42 Pound().run()

Download 009.py

If you run this, you’ll get:

That’s right! You get nothing! Why? Well in circuits any error or exception that occurs in a running application
is automatically caught and dealt with in a way that lets your application “keep on going”. Crashing is unwanted
behavior in a system so we expect to be able to recover from horrible situations.

SO what do we do? Well that’s easy. circuits comes with a Debugger that lets you log all events as well as all errors
so you can quickly and easily discover which Event is causing a problem and which Event Handler to look at.

If you change Line 34 of our example. . .

From:

To:

from circuits import Debugger

(Pound() + Debugger()).run()

Then run this, you’ll get the following:

<Registered[bob:registered] [<Bob/bob 3191:MainThread (queued=0, channels=2,
→˓handlers=2) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>]
→˓{}>
<Registered[fred:registered] [<Fred/fred 3191:MainThread (queued=0, channels=2,
→˓handlers=2) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>]
→˓{}>
<Registered[*:registered] [<Debugger/* 3191:MainThread (queued=0, channels=1,
→˓handlers=1) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>]
→˓{}>
<Started[*:started] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>,
→˓ None] {}>
<Bark[bob:bark] [] {}>
<Bark[fred:bark] [] {}>
<Error[*:exception] [<type 'exceptions.NameError'>, NameError("global name 'name' is
→˓not defined",), [' File "/home/prologic/work/circuits/circuits/core/manager.py",
→˓line 459, in __handleEvent\n retval = handler(*eargs, **ekwargs)\n', ' File
→˓"source/tutorial/009.py", line 22, in bark\n print("Woof! I\'m %s!" % name)\n'],
→˓<bound method ?.bark of <Bob/bob 3191:MainThread (queued=0, channels=2, handlers=2)
→˓[S]>>] {}>
ERROR <listener on ('bark',) {target='bob', priority=0.0}> (<type 'exceptions.
→˓NameError'>): global name 'name' is not defined
File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __

→˓handleEvent
retval = handler(*eargs, **ekwargs)
File "source/tutorial/009.py", line 22, in bark
print("Woof! I'm %s!" % name)

<Error[*:exception] [<type 'exceptions.NameError'>, NameError("global name 'name' is
→˓not defined",), [' File "/home/prologic/work/circuits/circuits/core/manager.py",
→˓line 459, in __handleEvent\n retval = handler(*eargs, **ekwargs)\n', ' File
→˓"source/tutorial/009.py", line 22, in bark\n print("Woof! I\'m %s!" % name)\n'],
→˓<bound method ?.bark of <Fred/fred 3191:MainThread (queued=0, channels=2,
→˓handlers=2) [S]>>] {}>

(continues on next page)

2.2. circuits Tutorials 19

circuits Documentation, Release 3.2.2

(continued from previous page)

ERROR <listener on ('bark',) {target='fred', priority=0.0}> (<type 'exceptions.
→˓NameError'>): global name 'name' is not defined
File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __

→˓handleEvent
retval = handler(*eargs, **ekwargs)

File "source/tutorial/009.py", line 22, in bark
print("Woof! I'm %s!" % name)

^C<Signal[*:signal] [2, <frame object at 0x808e8ec>] {}>
<Stopped[*:stopped] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [S]>
→˓] {}>
<Stopped[*:stopped] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [S]>
→˓] {}>

You’ll notice whereas there was no output before there is now a pretty detailed output with the Debugger added to
the application. Looking through the output, we find that the application does indeed start correctly, but when we fire
our Bark Event it coughs up two exceptions, one for each of our dogs (Bob and Fred).

From the error we can tell where the error is and roughly where to look in the code.

Note: You’ll notice many other events that are displayed in the above output. These are all default events that circuits
has builtin which your application can respond to. Each builtin Event has a special meaning with relation to the state
of the application at that point.

See: circuits.core.events for detailed documentation regarding these events.

The correct code for the bark Event Handler should be:

def bark(self):
print("Woof! I'm %s!" % self.name)

Running again with our correction results in the expected output:

Woof! I'm Bob!
Woof! I'm Fred!

That’s it folks!

Hopefully this gives you a feel of what circuits is all about and an easy tutorial on some of the basic concepts. As
you’re no doubt itching to get started on your next circuits project, here’s some recommended reading:

• ../faq

• ../api/index

2.2.2 Telnet Tutorial

Overview

Welcome to our 2nd circuits tutorial. This tutorial is going to walk you through the telnet Example showing you how
to various parts of the circuits component library for building a simple TCP client that also accepts user input.

Be sure you have circuits installed before you start:

pip install circuits

20 Chapter 2. Documentation

https://github.com/circuits/circuits/tree/master/examples/telnet.py

circuits Documentation, Release 3.2.2

See: Installing

Components

You will need the following components:

1. The TCPClient Component

2. The File Component

3. The Component Component

All these are available in the circuits library so there is nothing for you to do. Click on each to read more about them.

Design

TCPClient

Select

Telnet

File

The above graph is the overall design of our Telnet application. What’s shown here is a relationship of how the
components fit together and the overall flow of events.

For example:

1. Connect to remote TCP Server.

2. Read input from User.

3. Write input from User to connected Socket.

4. Wait for data from connected Socket and display.

Note: The Select Component shown is required by our application for Asynchronous I/O polling however we
do not need to explicitly use it as it is automatically imported and registered simply by utilizing the TCPClient
Component.

2.2. circuits Tutorials 21

circuits Documentation, Release 3.2.2

Implementation

Without further delay here’s the code:

1 #!/usr/bin/env python
2

3 import sys
4

5 from circuits import Component, handler
6 from circuits.io import File
7 from circuits.net.events import connect, write
8 from circuits.net.sockets import TCPClient
9

10

11 class Telnet(Component):
12

13 channel = "telnet"
14

15 def init(self, host, port):
16 self.host = host
17 self.port = port
18

19 TCPClient(channel=self.channel).register(self)
20 File(sys.stdin, channel="stdin").register(self)
21

22 def ready(self, socket):
23 self.fire(connect(self.host, self.port))
24

25 def read(self, data):
26 print(data.strip())
27

28 @handler("read", channel="stdin")
29 def read_user_input(self, data):
30 self.fire(write(data))
31

32

33 host = sys.argv[1]
34 port = int(sys.argv[2])
35

36 Telnet(host, port).run()

Download telnet.py

Discussion

Some important things to note. . .

1. Notice that we defined a channel for out Telnet Component?

This is so that the events of TCPClient and File don’t collide. Both of these components share a very similar
interface in terms of the events they listen to.

class Telnet(Component):

channel = "telnet"

2. Notice as well that in defining a channel for our Telnet Component we’ve also “registered” the
TCPClient Component so that it has the same channel as our Telnet Component.

22 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

Why? We want our Telnet Component to receive all of the events of the TCPClient Component.

TCPClient(channel=self.channel).register(self)

3. In addition to our TCPClient Component being registered with the same channel as our Telnet Compo-
nent we can also see that we have registered a File Component however we have chosen a different channel
here called stdin.

Why? We don’t want the events from TCPClient and subsequently our Telnet Component to collide with
the events from File.

So we setup a Component for reading user input by using the File Component and attaching an event handler
to our Telnet Component but listening to events from our stdin channel.

File(sys.stdin, channel="stdin").register(self)

@handler("read", channel="stdin")
def read_user_input(self, data):

self.fire(write(data))

Here is what the event flow would look like if you were to register the Debugger to the Telnet Component.

from circuits import Debugger
(Telnet(host, port) + Debugger()).run()

$ python telnet.py 10.0.0.2 9000
<registered[telnet] (<TCPClient/telnet 21995:MainThread (queued=0) [S]>, <Telnet/
→˓telnet 21995:MainThread (queued=4) [R]>)>
<registered[stdin] (<File/stdin 21995:MainThread (queued=0) [S]>, <Telnet/telnet
→˓21995:MainThread (queued=5) [R]>)>
<registered[*] (<Debugger/* 21995:MainThread (queued=0) [S]>, <Telnet/telnet
→˓21995:MainThread (queued=5) [R]>)>
<started[telnet] (<Telnet/telnet 21995:MainThread (queued=4) [R]>)>
<registered[select] (<Select/select 21995:MainThread (queued=0) [S]>, <TCPClient/
→˓telnet 21995:MainThread (queued=0) [S]>)>
<ready[telnet] (<TCPClient/telnet 21995:MainThread (queued=0) [S]>)>
<ready[stdin] (<File/stdin 21995:MainThread (queued=0) [S]>)>
<connect[telnet] ('10.0.0.2', 9000)>
<_open[stdin] ()>
<connected[telnet] ('10.0.0.2', 9000)>
<opened[stdin] ('<stdin>', 'r')>
Hello World!
<_read[stdin] (<open file '<stdin>', mode 'r' at 0x7f32ff5ab0c0>)>
<read[stdin] ('Hello World!\n')>
<write[telnet] ('Hello World!\n')>
<_write[telnet] (<socket._socketobject object at 0x11f7f30>)>
<_read[telnet] (<socket._socketobject object at 0x11f7f30>)>
<read[telnet] ('Hello World!\n')>
Hello World!
^C<signal[telnet] (2, <frame object at 0x12b0a10>)>
<stopped[telnet] (<Telnet/telnet 21995:MainThread (queued=0) [S]>)>
<close[telnet] ()>
<close[stdin] ()>
<disconnected[telnet] ()>
<closed[stdin] ()>

2.2. circuits Tutorials 23

circuits Documentation, Release 3.2.2

Testing

To try this example out, download a copy of the echoserver Example and copy and paste the full source code of the
Telnet example above into a file called telnet.py.

In one terminal run:

$ python echoserver.py

In a second terminal run:

$ python telnet.py localhost 9000

Have fun!

For more examples see examples.

See also:

• Frequently Asked Questions

• API Documentation

2.3 circuits User Manual

2.3.1 Core Library

Components

The architectural concept of circuits is to encapsulate system functionality into discrete manageable and reusable units,
called Components, that interact by sending and handling events that flow throughout the system.

Technically, a circuits Component is a Python class that inherits (directly or indirectly) from BaseComponent.

Components can be sub-classed like any other normal Python class, however components can also be composed of
other components and it is natural to do so. These are called Complex Components. An example of a Complex
Component within the circuits library is the circuits.web.servers.Server Component which is comprised
of:

• circuits.net.sockets.TCPServer

• circuits.web.servers.BaseServer

• circuits.web.http.HTTP

• circuits.web.dispatchers.dispatcher.Dispatcher

Note: There is no class or other technical means to mark a component as a complex component. Rather, all com-
ponent instances in a circuits based application belong to some component tree (there may be several), with Complex
Components being a subtree within that structure.

A Component is attached to the tree by registering with the parent and detached by unregistering itself. See methods:

• register()

• unregister()

24 Chapter 2. Documentation

https://github.com/circuits/circuits/tree/master/echoserver.py
https://github.com/circuits/circuits/tree/master/examples

circuits Documentation, Release 3.2.2

The hierarchy of components facilitates addition and removal of complex components at runtime.

All registered components in the hierarchy receive all applicable events regardless of lineage.

Component Registration

To register a component use the register() method.

1 from circuits import Component
2

3

4 class Foo(Component):
5 """Foo Component"""
6

7

8 class App(Component):
9 """App Component"""

10

11 def init(self):
12 Foo().register(self)
13

14

15 app = App()
16 debugger = Debugger().register(app)
17 app.run()

Unregistering Components

Components are unregistered via the unregister() method.

debugger.unregister()

Note: You need a reference to the component you wish to unregister. The register() method returns you a
reference of the component that was registered.

Convenient Shorthand Form

After a while when your application becomes rather large and complex with many components and component regis-
trations you will find it cumbersome to type .register(blah).

circuits has several convenient methods for component registration and deregistration that work in an identical fashion
to their register() and unregister() counterparts.

These convenience methods follow normal mathematical operator precedence rules and are implemented by overload-
ing the Python __add__, __iadd__, __sub__ and __isub__.

The mapping is as follow:

• register() map to + and +=

• unregister() map to> - and -=

For example the above could have been written as:

2.3. circuits User Manual 25

circuits Documentation, Release 3.2.2

1 from circuits import Component
2

3

4 class Foo(Component):
5 """Foo Component"""
6

7

8 class App(Component):
9 """App Component"""

10

11 def init(self):
12 self += Foo()
13

14

15 (App() + Debugger()).run()

Implicit Component Registration(s)

Sometimes it’s handy to implicitly register components into another component by simply referencing the other com-
ponent instance as a class attribute of the other.

Example:

>>> from circuits import Component
>>>
>>> class Foo(Component):
... """Foo Component"""
...
>>> class App(Component):
... """App Component"""
...
... foo = Foo()
...
>>> app = App()
>>> app.components
set([<Foo/* 28599:MainThread (queued=0) [S]>])
>>>

The telnet Example does this for example.

Debugger

The core Debugger component is the standard way to debug your circuits applications. It services two purposes:

• Logging events as they flow through the system.

• Logging any exceptions that might occurs in your application.

Usage

Using the Debugger in your application is very straight forward just like any other component in the circuits com-
ponent library. Simply add it to your application and register it somewhere (it doesn’t matter where).

Example:

26 Chapter 2. Documentation

https://github.com/circuits/circuits/tree/master/examples/telnet.py

circuits Documentation, Release 3.2.2

1 from circuits import Component, Debugger
2

3

4 class App(Component):
5 """Your Application"""
6

7

8 app = App()
9 Debugger().register(app)

10 app.run()

Sample Output(s)

Here are some example outputs that you should expect to see when using the Debugger component in your applica-
tion.

Example Code:

1 from circuits import Event, Component, Debugger
2

3

4 class foo(Event):
5 """foo Event"""
6

7

8 class App(Component):
9

10 def foo(self, x, y):
11 return x + y
12

13

14 app = App() + Debugger()
15 app.start()

Run with:

python -i app.py

Logged Events:

<registered[*] (<Debugger/* 27098:App (queued=0) [S]>, <App/* 27098:App (queued=2)
→˓[R]>)>
<started[*] (<App/* 27098:App (queued=1) [R]>)>
>>> app.fire(foo(1, 2))
<Value () result=False; errors=False; for <foo[*] (1, 2)>
>>> <foo[*] (1, 2)>

Logged Exceptions:

>>> app.fire(foo())
<Value () result=False; errors=False; for <foo[*] ()>
>>> <foo[*] ()>
<exception[*] (<type 'exceptions.TypeError'>, TypeError('foo() takes exactly 3
→˓arguments (1 given)',), [' File "/home/prologic/work/circuits/circuits/core/
→˓manager.py", line 561, in _dispatcher\n value = handler(*eargs, **ekwargs)\n']
→˓handler=<bound method App.foo of <App/* 27098:App (queued=1) [R]>>, fevent=<foo[*]
→˓()>)> (continues on next page)

2.3. circuits User Manual 27

circuits Documentation, Release 3.2.2

(continued from previous page)

ERROR <handler[*][foo] (App.foo)> (<foo[*] ()>) {<type 'exceptions.TypeError'>}:
→˓foo() takes exactly 3 arguments (1 given)
File "/home/prologic/work/circuits/circuits/core/manager.py", line 561, in _

→˓dispatcher
value = handler(*eargs, **ekwargs)

Events

Basic usage

Events are objects that contain data (arguments and keyword arguments) about the message being sent to a receiving
component. Events are triggered by using the fire() method of any registered component.

Some events in circuits are fired implicitly by the circuits core like the started event used in the tutorial or explic-
itly by components while handling some other event. Once fired, events are dispatched to the components that are
interested in these events (components whose event handlers match events of interest).

Events are usually fired on one or more channels, allowing components to gather in “interest groups”. This is especially
useful if you want to reuse basic components such as a TCPServer. A TCPServer component fires a read event
for every package of data that it receives. If we did not have support for channels, it would be very difficult to build
two servers in a single process without their read events colliding.

Using channels, we can put one server and all components interested in its events on one channel, and another server
and the components interested in this other server’s events on another channel.

Components are associated with a channel by setting their channel class or instance attribute.

See also:

Component

Besides having a name, events carry additional arbitrary information. This information is passed as arguments or
keyword arguments to the constructor. It is then delivered to the event handler method that must have exactly the
same number of arguments and keyword arguments. Of course, as is usual in Python, you can also pass additional
information by setting attributes of the event object, though this usage pattern is discouraged.

Filtering

Events can be filtered by stopping other event handlers from continuing to process the event.

To do this, simply call the stop() method.

Example:

@handler("foo")
def stop_foo(self, event, *args, **kwargs):

event.stop()

Here any other event handlers also listening to “foo” will not be processed.

Note: It’s important to use priority event handlers here in this case as all event handlers and events run with the same
priority unless explicitly told otherwise.

28 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

Changed in version 3.0: In circuits 2.x you declared your event handler to be a filter by using
@handler(filter=True) and returned a True-ish value from the respective event handler to achieve the same
effect. This is no longer the case in circuits 3.x Please use event.stop() as noted above.

Events as result collectors

Apart from delivering information to handlers, event objects may also collect information. If a handler returns some-
thing that is not None, it is stored in the event’s value attribute. If a second (or any subsequent) handler invocation
also returns a value, the values are stored as a list. Note that the value attribute is of type Value and you must access
its property value to access the data stored (collected_information = event.value.value).

The collected information can be accessed by handlers in order to find out about any return values from the previously
invoked handlers. More useful though, is the possibility to access the information after all handlers have been invoked.
After all handlers have run successfully (i.e. no handler has thrown an error) circuits may generate an event that
indicates the successful handling. This event has the name of the event just handled with “Success” appended. So if
the event is called Identify then the success event is called IdentifySuccess. Success events aren’t delivered
by default. If you want successful handling to be indicated for an event, you have to set the optional attribute success
of this event to True.

The handler for a success event must be defined with two arguments. When invoked, the first argument is the event just
having been handled successfully and the second argument is (as a convenience) what has been collected in event.
value.value (note that the first argument may not be called event, for an explanation of this restriction as well
as for an explanation why the method is called identify_success see the section on handlers).

1 #!/usr/bin/env python
2

3 from circuits import Component, Debugger, Event
4

5

6 class Identify(Event):
7

8 """Identify Event"""
9

10 success = True
11

12

13 class Pound(Component):
14

15 def __init__(self):
16 super(Pound, self).__init__()
17

18 Debugger().register(self)
19 Bob().register(self)
20 Fred().register(self)
21

22 def started(self, *args):
23 self.fire(Identify())
24

25 def Identify_success(self, evt, result):
26 if not isinstance(result, list):
27 result = [result]
28 print "In pound:"
29 for name in result:
30 print name
31

32

(continues on next page)

2.3. circuits User Manual 29

circuits Documentation, Release 3.2.2

(continued from previous page)

33 class Dog(Component):
34

35 def Identify(self):
36 return self.__class__.__name__
37

38

39 class Bob(Dog):
40

41 """Bob"""
42

43

44 class Fred(Dog):
45

46 """Fred"""
47

48 Pound().run()

Download handler_returns.py

Advanced usage

Sometimes it may be necessary to take some action when all state changes triggered by an event are in effect. In this
case it is not sufficient to wait for the completion of all handlers for this particular event. Rather, we also have to wait
until all events that have been fired by those handlers have been processed (and again wait for the events fired by those
events’ handlers, and so on). To support this scenario, circuits can fire a Complete event. The usage is similar to
the previously described success event. Details can be found in the API description of circuits.core.events.
Event.

Handlers

Explicit Event Handlers

Event Handlers are methods of components that are invoked when a matching event is dispatched. These can be
declared explicitly on a BaseComponent or Component or by using the handler() decorator.

1 #!/usr/bin/env python
2

3 from circuits import BaseComponent, Debugger, handler
4

5

6 class MyComponent(BaseComponent):
7

8 def __init__(self):
9 super(MyComponent, self).__init__()

10

11 Debugger().register(self)
12

13 @handler("started", channel="*")
14 def system_started(self, component):
15 print "Start event detected"
16

17 MyComponent().run()

Download handler_annotation.py

30 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

The handler decorator on line 14 turned the method system_started into an event handler for the event started.

When defining explicit event handlers in this way, it’s convention to use the following pattern:

@handler("foo")
def print_foobar(self, ...):

print("FooBar!")

This makes reading code clear and concise and obvious to the reader that the method is not part of the class’s public
API (leading underscore as per Python convention) and that it is invoked for events of type SomeEvent.

The optional keyword argument “channel” can be used to attach the handler to a different channel than the compo-
nent’s channel (as specified by the component’s channel attribute).

Handler methods must be declared with arguments and keyword arguments that match the arguments passed to the
event upon its creation. Looking at the API for started you’ll find that the component that has been started is
passed as an argument to its constructor. Therefore, our handler method must declare one argument (Line 14).

The handler() decorator accepts other keyword arguments that influence the behavior of the event handler and its
invocation. Details can be found in the API description of handler().

Implicit Event Handlers

To make things easier for the developer when creating many event handlers and thus save on some typing, the
Component can be used and subclassed instead which provides an implicit mechanism for creating event handlers.

Basically every method in the component is automatically and implicitly marked as an event handler with
@handler(<name>) where <name> is the name of each method applied.

The only exceptions are:

• Methods that start with an underscore _.

• Methods already marked explicitly with the handler() decorator.

Example:

#!/usr/bin/env python

from circuits import handler, Component, Event

class hello(Event):
"""hello Event"""

class App(Component):

def _say(self, message):
"""Print the given message

This is a private method as denoted via the prefixed underscore.
This will not be turned into an event handler.
"""

print(message)

def started(self, manager):

(continues on next page)

2.3. circuits User Manual 31

circuits Documentation, Release 3.2.2

(continued from previous page)

self._say("App Started!")
self.fire(hello())
raise SystemExit(0)

@handler("hello")
def print_hello(self):

"""hello Event Handlers

Print "Hello World!" when the ``hello`` Event is received.

As this is already decorated with the ``@handler``
decorator, it will be left as it is and won't get
touched by the implicit event handler creation
mechanisms.
"""

print("Hello World!")

@handler(False)
def test(self, *args, **kwargs):

"""A simple test method that does nothing

This will not be turned into an event handlers
because of the ``False`` argument passed to the
``@handler`` decorator. This only makes sense
when subclassing ``Component`` and you want to
have fine grained control over what methods
are not turned into event handlers.
"""

pass

App().run()

Note: You can specify that a method will not be marked as an event handler by passing False as the first argument
to @handler().

Manager

The core Manager class is the base class of all components in circuits. It is what defines the API(s) of all compo-
nents and necessary machinery to run your application smoothly.

Note: It is not recommended to actually use the Manager in your application code unless you know what you’re
doing.

Warning: A Manager does not know how to register itself to other components! It is a manager, not a compo-
nent, however it does form the basis of every component.

32 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

Usage

Using the Manager in your application is not really recommended except in some special circumstances where you
want to have a top-level object that you can register things to.

Example:

1 from circuits import Component, Manager
2

3

4 class App(Component):
5 """Your Application"""
6

7

8 manager = Manager()
9 App().register(manager)

10 manager.run()

Note: If you think you need a Manager chances are you probably don’t. Use a Component instead.

Values

The core Value class is an internal part of circuits’ Futures and Promises used to fulfill promises of the return value
of an event handler and any associated chains of events and event handlers.

Basically when you fire an event foo() such as:

x = self.fire(foo())

x here is an instance of the Value class which will contain the value returned by the event handler for foo in the
.value property.

Note: There is also getValue() which can be used to also retrieve the underlying value held in the instance of the
Value class but you should not need to use this as the .value property takes care of this for you.

The only other API you may need in your application is the notifywhich can be used to trigger a value_changed
event when the underlying Value of the event handler has changed. In this way you can do something asynchronously
with the event handler’s return value no matter when it finishes.

Example Code:

1 #!/usr/bin/python -i
2

3

4 from circuits import handler, Event, Component, Debugger
5

6

7 class hello(Event):
8 "hello Event"
9

10

11 class test(Event):
12 "test Event"

(continues on next page)

2.3. circuits User Manual 33

http://en.wikipedia.org/wiki/Futures_and_promises

circuits Documentation, Release 3.2.2

(continued from previous page)

13

14

15 class App(Component):
16

17 def hello(self):
18 return "Hello World!"
19

20 def test(self):
21 return self.fire(hello())
22

23 @handler("hello_value_changed")
24 def _on_hello_value_changed(self, value):
25 print("hello's return value was: {}".format(value))
26

27

28 app = App()
29 Debugger().register(app)

Example Session:

1 $ python -i ../app.py
2 >>> x = app.fire(test())
3 >>> x.notify = True
4 >>> app.tick()
5 <registered[*] (<Debugger/* 27798:MainThread (queued=0) [S]>, <App/* 27798:MainThread

→˓(queued=1) [S]>)>
6 <test[*] ()>
7 >>> app.tick()
8 <hello[*] ()>
9 >>> app.tick()

10 <test_value_changed[<App/* 27798:MainThread (queued=0) [S]>] (<Value ('Hello World!')
→˓result=True; errors=False; for <test[*] ()>)>

11 >>> app.tick()
12 >>> x
13 <Value ('Hello World!') result=True; errors=False; for <test[*] ()>
14 >>> x.value
15 'Hello World!'
16 >>>

The Value.notify attribute can also be set to the name of an event which should be used to fire the
value_changed event to.

If the form x.notify = True used then the event that gets fired is a concatenation of the original event and the
value_changed event. e.g: foo_value_changed.

Note: This is a bit advanced and should only be used by experienced users of the circuits framework. If you simply
want basic synchronization of event handlers it’s recommended that you try the circuits.Component.call()
and circuits.Component.wait() synchronization primitives first.

2.3.2 Miscellaneous

Tools

There are two main tools of interest in circuits. These are:

34 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• circuits.tools.inspect()

• circuits.tools.graph()

These can be found in the circuits.tools module.

Introspecting your Application

The inspect() function is used to help introspect your application by displaying all the channels and events handlers
defined through the system including any additional meta data about them.

Example:

>>> from circuits import Component
>>> class App(Component):
... def foo(self):
... pass
...
>>> app = App()
>>> from circuits.tools import inspect
>>> print(inspect(app))
Components: 0

Event Handlers: 3
unregister; 1
<handler[*][unregister] (App._on_unregister)>
foo; 1
<handler[*][foo] (App.foo)>
prepare_unregister_complete; 1
<handler[<instance of App>][prepare_unregister_complete] (App._on_prepare_

→˓unregister_complete)>

Displaying a Visual Representation of your Application

The graph() function is used to help visualize the different components in your application and how they interact
with one another and how they are registered in the system.

In order to get a image from this you must have the following packages installed:

• networkx

• pygraphviz

• matplotlib

You can install the required dependencies via:

pip install matplotlib networkx pygraphviz

Example:

>>> from circuits import Component, Debugger
>>> from circuits.net.events import write
>>> from circuits.net.sockets import TCPServer
>>>
>>> class EchoServer(Component):
... def init(self, host="0.0.0.0", port=8000):

(continues on next page)

2.3. circuits User Manual 35

http://pypi.python.org/pypi/networkx
http://pypi.python.org/pypi/pygraphviz
http://pypi.python.org/pypi/matplotlib

circuits Documentation, Release 3.2.2

(continued from previous page)

... TCPServer((host, port)).register(self)

... Debugger().register(self)

... def read(self, sock, data):

... self.fire(write(sock, data))

...
>>> server = EchoServer()
>>>
>>> from circuits.tools import graph
>>> print(graph(server))

* <EchoServer/* 784:MainThread (queued=2) [S]>

* <TCPServer/server 784:MainThread (queued=0) [S]>

* <Debugger/* 784:MainThread (queued=0) [S]>

An output image will be saved to your current working directory and by called <name>.png where <name> is
the name of the top-level component in your application of the value you pass to the name= keyword argument of
~circuits.tools.graph.

Example output of telnet Example:

And its DOT Graph:

36 Chapter 2. Documentation

https://github.com/circuits/circuits/tree/master/examples/telnet.py

circuits Documentation, Release 3.2.2

TCPClient

Select

Telnet

File

2.4 circuits.web User Manual

2.4.1 Introduction

circuits.web is a set of components for building high performance HTTP/1.1 and WSGI/1.0 compliant web applica-
tions. These components make it easy to rapidly develop rich, scalable web applications with minimal effort.

circuits.web borrows from

• CherryPy

• BaseHTTPServer (Python std. lib)

• wsgiref (Python std. lib)

2.4.2 Getting Started

Just like any application or system built with circuits, a circuits.web application follows the standard Component based
design and structure whereby functionality is encapsulated in components. circuits.web itself is designed and built in
this fashion. For example a circuits.web Server’s structure looks like this:

2.4. circuits.web User Manual 37

http://www.cherrypy.org

circuits Documentation, Release 3.2.2

To illustrate the basic steps, we will demonstrate developing your classical “Hello World!” applications in a web-based
way with circuits.web

To get started, we first import the necessary components:

from circutis.web import Server, Controller

Next we define our first Controller with a single Request Handler defined as our index. We simply return “Hello
World!” as the response for our Request Handler.

class Root(Controller):

def index(self):
return "Hello World!"

This completes our simple web application which will respond with “Hello World!” when anyone accesses it.

Admittedly this is a stupidly simple web application! But circuits.web is very powerful and plays nice with other tools.

Now we need to run the application:

(Server(8000) + Root()).run()

That’s it! Navigate to: http://127.0.0.1:8000/ and see the result.

Here’s the complete code:

1 from circuits.web import Server, Controller
2

3 class Root(Controller):
4

5 def index(self):
6 return "Hello World!"
7

8 (Server(8000) + Root()).run()

Have fun!

2.4.3 Features

circuits.web is not a Full Stack or High Level web framework, rather it is more closely aligned with CherryPy and
offers enough functionality to make quickly developing web applications easy and as flexible as possible.

circuits.web does not provide high level features such as:

• Templating

38 Chapter 2. Documentation

http://127.0.0.1:8000/
http://www.cherrypy.org/

circuits Documentation, Release 3.2.2

• Database access

• Form Validation

• Model View Controller

• Object Relational Mapper

The functionality that circutis.web does provide ensures that circuits.web is fully HTTP/1.1 and WSGI/1.0 compliant
and offers all the essential tools you need to build your web application or website.

To demonstrate each feature, we’re going to use the classical “Hello World!” example as demonstrated earlier in
Getting Started.

Here’s the code again for easy reference:

1 from circuits.web import Server, Controller
2

3

4 class Root(Controller):
5

6 def index(self):
7 return "Hello World!"
8

9

10 (Server(8000) + Root()).run()

Logging

circuits.web’s Logger component allows you to add logging support compatible with Apache log file formats to your
web application.

To use the Logger simply add it to your application:

(Server(8000) + Logger() + Root()).run()

Example Log Output:

127.0.0.1 - - [05/Apr/2014:10:13:01] "GET / HTTP/1.1" 200 12 "" "curl/7.35.0"
127.0.0.1 - - [05/Apr/2014:10:13:02] "GET /docs/build/html/index.html HTTP/1.1" 200
→˓22402 "" "curl/7.35.0"

Cookies

Access to cookies are provided through the Request Object which holds data about the request. The attribute
cookie is provided as part of the RequestObject. It is a dict-like object, an instance of Cookie.SimpleCookie
from the python standard library.

To demonstrate “Using Cookies” we’ll write a very simple application that remembers who we are:

If a cookie name is found, display “Hello <name>!”. Otherwise, display “Hello World!” If an argument is given or a
query parameter name is given, store this as the name for the cookie. Here’s how we do it:

1 from circuits.web import Server, Controller
2

3

4 class Root(Controller):
5

(continues on next page)

2.4. circuits.web User Manual 39

circuits Documentation, Release 3.2.2

(continued from previous page)

6 def index(self, name=None):
7 if name:
8 self.cookie["name"] = name
9 else:

10 name = self.cookie.get("name", None)
11 name = "World!" if name is None else name.value
12

13 return "Hello {0:s}!".format(name)
14

15

16 (Server(8000) + Root()).run()

Note: To access the actual value of a cookie use the .value attribute.

Warning: Cookies can be vulnerable to XSS (Cross Site Scripting) attacks so use them at your own risk. See:
http://en.wikipedia.org/wiki/Cross-site_scripting#Cookie_security

Dispatchers

circuits.web provides several dispatchers in the dispatchers module. Most of these are available directly from the
circuits.web namespace by simply importing the required “dispatcher” from circuits.web.

Example:

from circuits.web import Static

The most important “dispatcher” is the default Dispatcher used by the circuits.web Server to dispatch incoming
requests onto a channel mapping (remember that circuits is event-driven and uses channels), quite similar to that of
CherryPy or any other web framework that supports object traversal.

Normally you don’t have to worry about any of the details of the default Dispatcher nor do you have to import it
or use it in any way as it’s already included as part of the circuits.web Server Component structure.

Static

The Static “dispatcher” is used for serving static resources/files in your application. To use this, simply add it to
your application. It takes some optional configuration which affects it’s behavior.

The simplest example (as per our Base Example):

(Server(8000) + Static() + Root()).run()

This will serve up files in the current directory as static resources.

Note: This may override your index request handler of your top-most (Root) Controller. As this might be
undesirable and it’s normally common to serve static resources via a different path and even have them stored in a
separate physical file path, you can configure the Static “dispatcher”.

Static files stored in /home/joe/www/:

40 Chapter 2. Documentation

http://en.wikipedia.org/wiki/Cross-site_scripting#Cookie_security

circuits Documentation, Release 3.2.2

(Server(8000) + Static(docroot="/home/joe/www/") + Root()).run()

Static files stored in /home/joe/www/ and we want them served up as /static URI(s):

(Server(8000) + Static("/static", docroot="/home/joe/www/") + Root()).run()

Dispatcher

The Dispatcher (the default) is used to dispatch requests and map them onto channels with a similar URL Mapping
as CherryPy’s. A set of “paths” are maintained by the Dispatcher as Controller(s) are registered to the system or
unregistered from it. A channel mapping is found by traversing the set of known paths (Controller(s)) and successively
matching parts of the path (split by /) until a suitable Controller and Request Handler is found. If no Request Handler
is found that matches but there is a “default” Request Handler, it is used.

This Dispatcher also included support for matching against HTTP methods:

• GET

• POST

• PUT

• DELETE.

Here are some examples:

1 class Root(Controller):
2

3 def index(self):
4 return "Hello World!"
5

6 def foo(self, arg1, arg2, arg3):
7 return "Foo: %r, %r, %r" % (arg1, arg2, arg3)
8

9 def bar(self, kwarg1="foo", kwarg2="bar"):
10 return "Bar: kwarg1=%r, kwarg2=%r" % (kwarg1, kwarg2)
11

12 def foobar(self, arg1, kwarg1="foo"):
13 return "FooBar: %r, kwarg1=%r" % (arg1, kwarg1)

With the following requests:

http://127.0.0.1:8000/
http://127.0.0.1:8000/foo/1/2/3
http://127.0.0.1:8000/bar?kwarg1=1
http://127.0.0.1:8000/bar?kwarg1=1&kwarg=2
http://127.0.0.1:8000/foobar/1
http://127.0.0.1:8000/foobar/1?kwarg1=1

The following output is produced:

Hello World!
Foo: '1', '2', '3'
Bar: kwargs1='1', kwargs2='bar'
Bar: kwargs1='1', kwargs2='bar'
FooBar: '1', kwargs1='foo'
FooBar: '1', kwargs1='1'

2.4. circuits.web User Manual 41

circuits Documentation, Release 3.2.2

This demonstrates how the Dispatcher handles basic paths and how it handles extra parts of a path as well as the query
string. These are essentially translated into arguments and keyword arguments.

To define a Request Handler that is specifically for the HTTP POST method, simply define a Request Handler like:

1 class Root(Controller):
2

3 def index(self):
4 return "Hello World!"
5

6

7 class Test(Controller):
8

9 channel = "/test"
10

11 def POST(self, *args, **kwargs): #***
12 return "%r %r" % (args, kwargs)

This will handles POST requests to “/test”, which brings us to the final point of creating URL structures in your
application. As seen above to create a sub-structure of Request Handlers (a tree) simply create another Controller
Component giving it a different channel and add it to the system along with your existing Controller(s).

Warning: All public methods defined in your If you don't want something exposed either
subclass from :class:`~BaseController whereby you have to explicitly use expose() or use
@expose(False) to decorate a public method as NOT Exposed or simply prefix the desired method with
an underscore (e.g: def _foo(...):).

VirtualHosts

The VirtualHosts “dispatcher” allows you to serves up different parts of your application for different “virtual”
hosts.

Consider for example you have the following hosts defined:

localdomain
foo.localdomain
bar.localdomain

You want to display something different on the default domain name “localdomain” and something different for each
of the sub-domains “foo.localdomain” and “bar.localdomain”.

To do this, we use the VirtualHosts “dispatcher”:

1 from circuits.web import Server, Controller, VirtualHosts
2

3

4 class Root(Controller):
5

6 def index(self):
7 return "I am the main vhost"
8

9

10 class Foo(Controller):
11

12 channel = "/foo"

(continues on next page)

42 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

(continued from previous page)

13

14 def index(self):
15 return "I am foo."
16

17

18 class Bar(Controller):
19

20 channel = "/bar"
21

22 def index(self):
23 return "I am bar."
24

25

26 domains = {
27 "foo.localdomain:8000": "foo",
28 "bar.localdomain:8000": "bar",
29 }
30

31

32 (Server(8000) + VirtualHosts(domains) + Root() + Foo() + Bar()).run()

With the following requests:

http://localdomain:8000/
http://foo.localdomain:8000/
http://bar.localdomain:8000/

The following output is produced:

I am the main vhost
I am foo.
I am bar.

The argument domains pasted to VirtualHosts’ constructor is a mapping (dict) of: domain -> channel

XMLRPC

The XMLRPC “dispatcher” provides a circuits.web application with the capability of serving up RPC Requests encoded
in XML (XML-RPC).

Without going into too much details (if you’re using any kind of RPC “dispatcher” you should know what you’re
doing. . .), here is a simple example:

1 from circuits import Component
2 from circuits.web import Server, Logger, XMLRPC
3

4

5 class Test(Component):
6

7 def foo(self, a, b, c):
8 return a, b, c
9

10

11 (Server(8000) + Logger() + XMLRPC() + Test()).run()

Here is a simple interactive session:

2.4. circuits.web User Manual 43

circuits Documentation, Release 3.2.2

>>> import xmlrpclib
>>> xmlrpc = xmlrpclib.ServerProxy("http://127.0.0.1:8000/rpc/")
>>> xmlrpc.foo(1, 2, 3)
[1, 2, 3]
>>>

JSONRPC

The JSONRPC “dispatcher” is Identical in functionality to the XMLRPC “dispatcher”.

Example:

1 from circuits import Component
2 from circuits.web import Server, Logger, JSONRPC
3

4

5 class Test(Component):
6

7 def foo(self, a, b, c):
8 return a, b, c
9

10

11 (Server(8000) + Logger() + JSONRPC() + Test()).run()

Interactive session (requires the ‘jsonrpclib <https://pypi.python.org/pypi/jsonrpc>‘_ library):

>>> import jsonrpclib
>>> jsonrpc = jsonrpclib.ServerProxy("http://127.0.0.1:8000/rpc/")
>>> jsonrpc.foo(1, 2, 3)
{'result': [1, 2, 3], 'version': '1.1', 'id': 2, 'error': None}
>>>

Caching

circuits.web includes all the usual Cache Control, Expires and ETag caching mechanisms.

For simple expires style caching use the expires() tool from circuits.web.tools.

Example:

1 from circuits.web import Server, Controller
2

3

4 class Root(Controller):
5

6 def index(self):
7 self.expires(3600)
8 return "Hello World!"
9

10

11 (Server(8000) + Root()).run()

For other caching mechanisms and validation please refer to the circuits.web.tools documentation.

See in particular:

• expires()

44 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• validate_since()

Note: In the example above we used self.expires(3600) which is just a convenience method built into
the Controller. The Controller has other such convenience methods such as .uri, .forbidden(), .
redirect(), .notfound(), .serve_file(), .serve_download() and .expires().

These are just wrappers around tools and events.

Compression

circuits.web includes the necessary low-level tools in order to achieve compression. These tools are provided as a set
of functions that can be applied to the response before it is sent to the client.

Here’s how you can create a simple Component that enables compression in your web application or website.

1 from circuits import handler, Component
2

3 from circuits.web.tools import gzip
4 from circuits.web import Server, Controller, Logger
5

6

7 class Gzip(Component):
8

9 @handler("response", priority=1.0)
10 def compress_response(self, event, response):
11 event[0] = gzip(response)
12

13

14 class Root(Controller):
15

16 def index(self):
17 return "Hello World!"
18

19

20 (Server(8000) + Gzip() + Root()).run()

Please refer to the documentation for further details:

• tools.gzip()

• utils.compress()

Authentication

circuits.web provides both HTTP Plain and Digest Authentication provided by the functions in circuits.web.
tools:

• tools.basic_auth()

• tools.check_auth()

• tools.digest_auth()

The first 2 arguments are always (as with most circuits.web tools):

• (request, response)

An example demonstrating the use of “Basic Auth”:

2.4. circuits.web User Manual 45

circuits Documentation, Release 3.2.2

1 from circuits.web import Server, Controller
2 from circuits.web.tools import check_auth, basic_auth
3

4

5 class Root(Controller):
6

7 def index(self):
8 realm = "Test"
9 users = {"admin": "admin"}

10 encrypt = str
11

12 if check_auth(self.request, self.response, realm, users, encrypt):
13 return "Hello %s" % self.request.login
14

15 return basic_auth(self.request, self.response, realm, users, encrypt)
16

17

18 (Server(8000) + Root()).run()

For “Digest Auth”:

1 from circuits.web import Server, Controller
2 from circuits.web.tools import check_auth, digest_auth
3

4

5 class Root(Controller):
6

7 def index(self):
8 realm = "Test"
9 users = {"admin": "admin"}

10 encrypt = str
11

12 if check_auth(self.request, self.response, realm, users, encrypt):
13 return "Hello %s" % self.request.login
14

15 return digest_auth(self.request, self.response, realm, users, encrypt)
16

17

18 (Server(8000) + Root()).run()

Session Handling

Session Handling in circuits.web is very similar to Cookies. A dict-like object called .session is attached to every
Request Object during the life-cycle of that request. Internally a Cookie named circuits.session is set in the response.

Rewriting the Cookie Example to use a session instead:

1 from circuits.web import Server, Controller, Sessions
2

3

4 class Root(Controller):
5

6 def index(self, name=None):
7 if name:
8 self.session["name"] = name
9 else:

(continues on next page)

46 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

(continued from previous page)

10 name = self.session.get("name", "World!")
11

12 return "Hello %s!" % name
13

14

15 (Server(8000) + Sessions() + Root()).run()

Note: The only Session Handling provided is a temporary in-memory based one and will not persist. No future
Session Handling components are planned. For persistent data you should use some kind of Database.

2.4.4 How To Guides

These “How To” guides will steer you in the right direction for common aspects of modern web applications and
website design.

How Do I: Use a Templating Engine

circuits.web tries to stay out of your way as much as possible and doesn’t impose any restrictions on what exter-
nal libraries and tools you can use throughout your web application or website. As such you can use any template
language/engine you wish.

Example: Using Mako

This basic example of using the Mako Templating Language. First a TemplateLookup instance is created. Finally a
function called render(name, **d) is created that is used by Request Handlers to render a given template and
apply data to it.

Here is the basic example:

1 #!/usr/bin/env python
2

3 import os
4

5

6 import mako
7 from mako.lookup import TemplateLookup
8

9

10 from circuits.web import Server, Controller
11

12

13 templates = TemplateLookup(
14 directories=[os.path.join(os.path.dirname(__file__), "tpl")],
15 module_directory="/tmp",
16 output_encoding="utf-8"
17)
18

19

20 def render(name, **d): #**
21 try:

(continues on next page)

2.4. circuits.web User Manual 47

circuits Documentation, Release 3.2.2

(continued from previous page)

22 return templates.get_template(name).render(**d) #**
23 except:
24 return mako.exceptions.html_error_template().render()
25

26

27 class Root(Controller):
28

29 def index(self):
30 return render("index.html")
31

32 def submit(self, firstName, lastName):
33 msg = "Thank you %s %s" % (firstName, lastName)
34 return render("index.html", message=msg)
35

36

37 (Server(8000) + Root()).run()

Other Examples

Other Templating engines will be quite similar to integrate.

How Do I: Integrate with a Database

Warning: Using databases in an asynchronous framework is problematic because most database implementations
don’t support asynchronous I/O operations.

Generally the solution is to use threading to hand off database operations to a separate thread.

Here are some ways to help integrate databases into your application:

1. Ensure your queries are optimized and do not block for extensive periods of time.

2. Use a library like SQLAlchemy that supports multi-threaded database operations to help prevent your cir-
cuits.web web application from blocking.

3. Optionally take advantage of the Worker component to fire task events wrapping database calls in a thread
or process pool. You can then use the call() and wait() synchronization primitives to help with the control
flow of your requests and responses.

Another way you can help improve performance is by load balancing across multiple backends of your web applica-
tion. Using things like haproxy or nginx for load balancing can really help.

How Do I: Use WebSockets

Since the WebSocketDispatcher id a circuits.web “dispatcher” it’s quite easy to integrate into your web applica-
tion. Here’s a simple trivial example:

1 #!/usr/bin/env python
2

3 from circuits.net.events import write
4 from circuits import Component, Debugger
5 from circuits.web.dispatchers import WebSocketsDispatcher

(continues on next page)

48 Chapter 2. Documentation

http://www.sqlalchemy.org/
http://haproxy.1wt.eu/
http://nginx.org/en/

circuits Documentation, Release 3.2.2

(continued from previous page)

6 from circuits.web import Controller, Logger, Server, Static
7

8

9 class Echo(Component):
10

11 channel = "wsserver"
12

13 def read(self, sock, data):
14 self.fireEvent(write(sock, "Received: " + data))
15

16

17 class Root(Controller):
18

19 def index(self):
20 return "Hello World!"
21

22

23 app = Server(("0.0.0.0", 8000))
24 Debugger().register(app)
25 Static().register(app)
26 Echo().register(app)
27 Root().register(app)
28 Logger().register(app)
29 WebSocketsDispatcher("/websocket").register(app)
30 app.run()

See the circuits.web examples.

How do I: Build a Simple Form

circuits.web parses all POST data as a request comes through and creates a dictionary of kwargs (Keyword Arguments)
that are passed to Request Handlers.

Here is a simple example of handling form data:

1 #!/usr/bin/env python
2

3 from circuits.web import Server, Controller
4

5

6 class Root(Controller):
7

8 html = """\
9 <html>

10 <head>
11 <title>Basic Form Handling</title>
12 </head>
13 <body>
14 <h1>Basic Form Handling</h1>
15 <p>
16 Example of using
17 circuits and it's
18 Web Components to build a simple web application that handles
19 some basic form data.
20 </p>
21 <form action="submit" method="POST">

(continues on next page)

2.4. circuits.web User Manual 49

https://github.com/circuits/circuits/tree/master/examples/web

circuits Documentation, Release 3.2.2

(continued from previous page)

22 <table border="0" rules="none">
23 <tr>
24 <td>First Name:</td>
25 <td><input type="text" name="firstName"></td>
26 </tr>
27 <tr>
28 <td>Last Name:</td>
29 <td><input type="text" name="lastName"></td>
30 </tr>
31 <tr>
32 <td colspan=2" align="center">
33 <input type="submit" value="Submit">
34 </td>
35 </tr>
36 </table>
37 </form>
38 </body>
39 </html>"""
40

41

42 def index(self):
43 return self.html
44

45 def submit(self, firstName, lastName):
46 return "Hello %s %s" % (firstName, lastName)
47

48

49 (Server(8000) + Root()).run(

How Do I: Upload a File

You can easily handle File Uploads as well using the same techniques as above. Basically the “name” you give your
<input> tag of type=”file” will get passed as the Keyword Argument to your Request Handler. It has the following
two attributes:

.filename - The name of the uploaded file.

.value - The contents of the uploaded file.

Here’s the code!

1 #!/usr/bin/env python
2

3 from circuits.web import Server, Controller
4

5

6 UPLOAD_FORM = """
7 <html>
8 <head>
9 <title>Upload Form</title>

10 </head>
11 <body>
12 <h1>Upload Form</h1>
13 <form method="POST" action="/" enctype="multipart/form-data">
14 Description: <input type="text" name="desc">

15 <input type="file" name="file">

(continues on next page)

50 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

(continued from previous page)

16 <input type="submit" value="Submit">
17 </form>
18 </body>
19 </html>
20 """
21

22 UPLOADED_FILE = """
23 <html>
24 <head>
25 <title>Uploaded File</title>
26 </head>
27 <body>
28 <h1>Uploaded File</h1>
29 <p>
30 Filename: %s

31 Description: %s
32 </p>
33 <p>File Contents:</p>
34 <pre>
35 %s
36 </pre>
37 </body>
38 </html>
39 """
40

41

42 class Root(Controller):
43

44 def index(self, file=None, desc=""):
45 if file is None:
46 return UPLOAD_FORM
47 else:
48 filename = file.filename
49 return UPLOADED_FILE % (file.filename, desc, file.value)
50

51

52 (Server(8000) + Root()).run()

circuits.web automatically handles form and file uploads and gives you access to the uploaded file via arguments to
the request handler after they’ve been processed by the dispatcher.

How Do I: Integrate with WSGI Applications

Integrating with other WSGI Applications is quite easy to do. Simply add in an instance of the Gateway component
into your circuits.web application.

Example:

1 #!/usr/bin/env python
2

3 from circuits.web.wsgi import Gateway
4 from circuits.web import Controller, Server
5

6

7 def foo(environ, start_response):
8 start_response("200 OK", [("Content-Type", "text/plain")])

(continues on next page)

2.4. circuits.web User Manual 51

circuits Documentation, Release 3.2.2

(continued from previous page)

9 return ["Foo!"]
10

11

12 class Root(Controller):
13 """App Rot"""
14

15 def index(self):
16 return "Hello World!"
17

18

19 app = Server(("0.0.0.0", 10000))
20 Root().register(app)
21 Gateway({"/foo": foo}).register(app)
22 app.run()

The apps argument of the Gateway component takes a key/value pair of path -> callable (a Python dictio-
nary) that maps each URI to a given WSGI callable.

How Do I: Deploy with Apache and mod_wsgi

Here’s how to deploy your new Circuits powered Web Application on Apache using mod_wsgi.

Let’s say you have a Web Hosting account with some provider.

• Your Username is: “joblogs”

• Your URL is: http://example.com/~joeblogs/

• Your Docroot is: /home/joeblogs/www/

Configuring Apache

The first step is to add in the following .htaccess file to tell Apache hat we want any and all requests to http://example.
com/~joeblogs/ to be served up by our circuits.web application.

Created the .htaccess file in your Docroot:

ReWriteEngine On
ReWriteCond %{REQUEST_FILENAME} !-f
ReWriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ /~joeblogs/index.wsgi/$1 [QSA,PT,L]

Running your Application with Apache/mod_wsgi

The get your Web Application working and deployed on Apache using mod_wsgi, you need to make a few changes to
your code. Based on our Basic Hello World example earlier, we modify it to the following:

1 #!/usr/bin/env python
2

3 from circuits.web import Controller
4 from circuits.web.wsgi import Application
5

6

7 class Root(Controller):
(continues on next page)

52 Chapter 2. Documentation

http://example.com/~joeblogs/
http://example.com/~joeblogs/
http://example.com/~joeblogs/

circuits Documentation, Release 3.2.2

(continued from previous page)

8

9 def index(self):
10 return "Hello World!"
11

12

13 application = Application() + Root()

That’s it! To run this, save it as index.wsgi and place it in your Web Root (public-html or www directory) as per the
above guidelines and point your favorite Web Browser to: http://example.com/~joeblogs/

Note: It is recommended that you actually use a reverse proxy setup for deploying circuits.web web application so
that you don’t loose the advantages and functionality of using an event-driven component architecture in your web
apps.

In production you should use a load balance and reverse proxy combination for best performance.

2.4.5 Miscellaneous

Writing Tools

Most of the internal tools used by circuits.web in circuits.web.tools are simply functions that modify the Request or
Response objects in some way or another. . . We won’t be covering that here. . . What we will cover is how to build
simple tools that do something to the Request or Response along it’s life-cycle.

Here is a simple example of a tool that uses the pytidylib library to tidy up the HTML output before it gets sent back
to the requesting client.

Code:

1 #!/usr/bin/env python
2 from tidylib import tidy_document
3

4 from circuits import Component
5

6 class Tidy(Component):
7

8 channel = "http"
9

10 def response(self, response):
11 document, errors = tidy_document("".join(response.body))
12 response.body = document
13 Usage:
14

15 (Server(8000) + Tidy() + Root()).run()

How it works:

This tool works by intercepting the Response Event on the “response” channel of the “http” target (or Component).
For more information about the life cycle of Request and Response events, their channels and where and how they can
be intercepted to perform various tasks read the Request/Response Life Cycle section.

2.4. circuits.web User Manual 53

http://example.com/~joeblogs/

circuits Documentation, Release 3.2.2

Writing Dispatchers

In circuits.web writing a custom “dispatcher” is only a matter of writing a Component that listens for incoming Request
events on the “request” channel of the “web” target. The simplest kind of “dispatcher” is one that simply modifies the
request.path in some way. To demonstrate this we’ll illustrate and describe how the !VirtualHosts “dispatcher” works.

VirtualHosts code:

1 class VirtualHosts(Component):
2

3 channel = "web"
4

5 def __init__(self, domains):
6 super(VirtualHosts, self).__init__()
7

8 self.domains = domains
9

10 @handler("request", filter=True, priority=1)
11 def request(self, event, request, response):
12 path = request.path.strip("/")
13

14 header = request.headers.get
15 domain = header("X-Forwarded-Host", header("Host", ""))
16 prefix = self.domains.get(domain, "")
17

18 if prefix:
19 path = _urljoin("/%s/" % prefix, path)
20 request.path = path

The important thing here to note is the Event Handler listening on the appropriate channel and the request.path being
modified appropriately.

You’ll also note that in [source:circuits/web/dispatchers.py] all of the dispatchers have a set priority. These priorities
are defined as:

$ grin "priority" circuits/web/dispatchers/
circuits/web/dispatchers/dispatcher.py:

92 : @handler("request", filter=True, priority=0.1)
circuits/web/dispatchers/jsonrpc.py:

38 : @handler("request", filter=True, priority=0.2)
circuits/web/dispatchers/static.py:

59 : @handler("request", filter=True, priority=0.9)
circuits/web/dispatchers/virtualhosts.py:

49 : @handler("request", filter=True, priority=1.0)
circuits/web/dispatchers/websockets.py:

53 : @handler("request", filter=True, priority=0.2)
circuits/web/dispatchers/xmlrpc.py:

36 : @handler("request", filter=True, priority=0.2)

in web applications that use multiple dispatchers these priorities set precedences for each “dispatcher” over another in
terms of who’s handling the Request Event before the other.

Note: Some dispatchers are designed to filter the Request Event and prevent it from being processed by other
dispatchers in the system.

54 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

2.5 API Documentation

2.5.1 circuits package

Subpackages

circuits.app package

Submodules

circuits.app.daemon module

Daemon Component

Component to daemonize a system into the background and detach it from its controlling PTY. Supports PID file
writing, logging stdin, stdout and stderr and changing the current working directory.

class circuits.app.daemon.Daemon(*args, **kwargs)
Bases: circuits.core.components.Component

Daemon Component

Parameters

• pidfile (str or unicode) – .pid filename

• stdin (str or unicode) – filename to log stdin

• stdout (str or unicode) – filename to log stdout

• stderr (str or unicode) – filename to log stderr

initializes x; see x.__class__.__doc__ for signature

channel = 'daemon'

daemonize()

deletepid()

init(pidfile, path=’/’, stdin=None, stdout=None, stderr=None, channel=’daemon’)

on_started(component)

registered(component, manager)

writepid()

class circuits.app.daemon.daemonize(*args, **kwargs)
Bases: circuits.core.events.Event

daemonize Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

2.5. API Documentation 55

circuits Documentation, Release 3.2.2

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.app.daemon.daemonized(*args, **kwargs)
Bases: circuits.core.events.Event

daemonized Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

56 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.app.daemon.deletepid(*args, **kwargs)
Bases: circuits.core.events.Event

“deletepid Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.app.daemon.writepid(*args, **kwargs)
Bases: circuits.core.events.Event

“writepid Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

2.5. API Documentation 57

circuits Documentation, Release 3.2.2

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

Module contents

Application Components

Contains various components useful for application development and tasks common to applications.

class circuits.app.Daemon(*args, **kwargs)
Bases: circuits.core.components.Component

Daemon Component

Parameters

• pidfile (str or unicode) – .pid filename

• stdin (str or unicode) – filename to log stdin

• stdout (str or unicode) – filename to log stdout

• stderr (str or unicode) – filename to log stderr

initializes x; see x.__class__.__doc__ for signature

channel = 'daemon'

daemonize()

deletepid()

init(pidfile, path=’/’, stdin=None, stdout=None, stderr=None, channel=’daemon’)

on_started(component)

registered(component, manager)

58 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

writepid()

class circuits.app.DropPrivileges(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

drop_privileges()

init(user=’nobody’, group=’nobody’, umask=63, **kwargs)

on_ready(server, bind)

circuits.core package

Submodules

circuits.core.bridge module

Bridge

The Bridge Component is used for inter-process communications between processes. Bridge is used internally when
a Component is started in “process mode” via circuits.core.manager.start(). Typically a Pipe is used as
the socket transport between two sides of a Bridge (there must be a :class:‘~Bridge‘ instance on both sides).

class circuits.core.bridge.Bridge(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = 'bridge'

init(socket, channel=’bridge’)

class circuits.core.bridge.ipc(event, channel=None)
Bases: circuits.core.events.Event

ipc Event

Send an event to a child/parent process

Parameters

• event (circuits.core.events.Event) – Event to execute remotely.

• channel (str) – IPC Channel (channel to use on child/parent).

circuits.core.components module

This module defines the BaseComponent and its subclass Component.

class circuits.core.components.BaseComponent(*args, **kwargs)
Bases: circuits.core.manager.Manager

This is the base class for all components in a circuits based application. Components can (and should, except
for root components) be registered with a parent component.

BaseComponents can declare methods as event handlers using the handler decoration (see circuits.core.
handlers.handler()). The handlers are invoked for matching events from the component’s channel (spec-
ified as the component’s channel attribute).

2.5. API Documentation 59

circuits Documentation, Release 3.2.2

BaseComponents inherit from circuits.core.manager.Manager. This provides components with the
circuits.core.manager.Manager.fireEvent()method that can be used to fire events as the result
of some computation.

Apart from the fireEvent() method, the Manager nature is important for root components that are started
or run.

Variables channel – a component can be associated with a specific channel by setting this at-
tribute. This should either be done by specifying a class attribute channel in the derived class
or by passing a keyword parameter channel=”. . . ” to __init__. If specified, the component’s
handlers receive events on the specified channel only, and events fired by the component will
be sent on the specified channel (this behavior may be overridden, see Event, fireEvent()
and handler()). By default, the channel attribute is set to “*”, meaning that events are fired
on all channels and received from all channels.

initializes x; see x.__class__.__doc__ for signature

channel = '*'

classmethod events()
Returns a list of all events this Component listens to

classmethod handlers()
Returns a list of all event handlers for this Component

classmethod handles(*names)
Returns True if all names are event handlers of this Component

register(parent)
Inserts this component in the component tree as a child of the given parent node.

Parameters parent (Manager) – the parent component after registration has completed.

This method fires a Registered event to inform other components in the tree about the new member.

unregister()
Removes this component from the component tree.

Removing a component from the component tree is a two stage process. First, the component is marked
as to be removed, which prevents it from receiving further events, and a prepare_unregister event
is fired. This allows other components to e.g. release references to the component to be removed before it
is actually removed from the component tree.

After the processing of the prepare_unregister event has completed, the component is removed
from the tree and an unregistered event is fired.

unregister_pending

class circuits.core.components.Component(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

class circuits.core.components.prepare_unregister(*args, **kwargs)
Bases: circuits.core.events.Event

This event is fired when a component is about to be unregistered from the component tree. Unregistering a
component actually detaches the complete subtree that the unregistered component is the root of. Components
that need to know if they are removed from the main tree (e.g. because they maintain relationships to other
components in the tree) handle this event, check if the component being unregistered is one of their ancestors
and act accordingly.

Parameters component – the component that will be unregistered

60 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

complete = True

in_subtree(component)
Convenience method that checks if the given component is in the subtree that is about to be detached.

circuits.core.debugger module

Debugger component used to debug each event in a system by printing each event to sys.stderr or to a Logger Com-
ponent instance.

class circuits.core.debugger.Debugger(errors=True, events=True, file=None, logger=None,
prefix=None, trim=None, **kwargs)

Bases: circuits.core.components.BaseComponent

Create a new Debugger Component

Creates a new Debugger Component that listens to all events in the system printing each event to sys.stderr or a
Logger Component.

Variables

• IgnoreEvents – list of events (str) to ignore

• IgnoreChannels – list of channels (str) to ignore

• enabled – Enabled/Disabled flag

Parameters log – Logger Component instance or None (default)

initializes x; see x.__class__.__doc__ for signature

IgnoreChannels = []

IgnoreEvents = ['generate_events']

circuits.core.events module

This module defines the basic event class and common events.

class circuits.core.events.Event(*args, **kwargs)
Bases: object

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

2.5. API Documentation 61

circuits Documentation, Release 3.2.2

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

alert_done = False

cancel()
Cancel the event from being processed (if not already)

channels = ()

child(name, *args, **kwargs)

complete = False

classmethod create(_name, *args, **kwargs)

failure = False

notify = False

parent = None

stop()
Stop further processing of this event

success = False

waitingHandlers = 0

class circuits.core.events.exception(type, value, traceback, handler=None, fevent=None)
Bases: circuits.core.events.Event

exception Event

This event is sent for any exceptions that occur during the execution of an event Handler that is not SystemExit
or KeyboardInterrupt.

Parameters

• type (type) – type of exception

• value (exceptions.Exceptions) – exception object

• traceback (traceback) – traceback of exception

• handler (@handler(<method>)) – handler that raised the exception

• fevent (event) – event that failed

format_traceback(traceback)

62 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

class circuits.core.events.generate_events(lock, max_wait)
Bases: circuits.core.events.Event

generate_events Event

This Event is sent by the circuits core. All components that generate timed events or events from external
sources (e.g. data becoming available) should fire any pending events in their “generate_events” handler.

The handler must either call stop() (*preventing other handlers from being called in the same iteration) or
must invoke reduce_time_left() with parameter 0.

Parameters max_wait – maximum time available for generating events.

Components that actually consume time waiting for events to be generated, thus suspending normal execution,
must provide a method resume that interrupts waiting for events.

lock

reduce_time_left(time_left)
Update the time left for generating events. This is typically used by event generators that currently don’t
want to generate an event but know that they will within a certain time. By reducing the time left, they
make sure that they are reinvoked when the time for generating the event has come (at the latest).

This method can only be used to reduce the time left. If the parameter is larger than the current value of
time left, it is ignored.

If the time left is reduced to 0 and the event is currently being handled, the handler’s resume method is
invoked.

time_left
The time left for generating events. A value less than 0 indicates unlimited time. You should have only
one component in your system (usually a poller component) that spends up to “time left” until it generates
an event.

class circuits.core.events.registered(component, manager)
Bases: circuits.core.events.Event

registered Event

This Event is sent when a Component has registered with another Component or Manager. This Event is only
sent if the Component or Manager being registered which is not itself.

Parameters

• component (Component) – The Component being registered

• manager (Component or Manager) – The Component or Manager being registered
with

class circuits.core.events.signal(signo, stack)
Bases: circuits.core.events.Event

signal Event

This Event is sent when a Component receives a signal.

Parameters

• signo – The signal number received.

• stack – The interrupted stack frame.

class circuits.core.events.started(manager)
Bases: circuits.core.events.Event

started Event

2.5. API Documentation 63

circuits Documentation, Release 3.2.2

This Event is sent when a Component or Manager has started running.

Parameters manager (Component or Manager) – The component or manager that was
started

class circuits.core.events.stopped(manager)
Bases: circuits.core.events.Event

stopped Event

This Event is sent when a Component or Manager has stopped running.

Parameters manager (Component or Manager) – The component or manager that has
stopped

class circuits.core.events.unregistered(*args, **kwargs)
Bases: circuits.core.events.Event

unregistered Event

This Event is sent when a Component has been unregistered from its Component or Manager.

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

64 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

circuits.core.handlers module

This module define the @handler decorator/function and the HandlesType type.

class circuits.core.handlers.HandlerMetaClass(name, bases, ns)
Bases: type

class circuits.core.handlers.Unknown
Bases: object

Unknown Dummy Component

circuits.core.handlers.handler(*names, **kwargs)
Creates an Event Handler

This decorator can be applied to methods of classes derived from circuits.core.components.
BaseComponent. It marks the method as a handler for the events passed as arguments to the @handler
decorator. The events are specified by their name.

The decorated method’s arguments must match the arguments passed to the circuits.core.events.
Event on creation. Optionally, the method may have an additional first argument named event. If declared, the
event object that caused the handler to be invoked is assigned to it.

By default, the handler is invoked by the component’s root Manager for events that are propagated on the
channel determined by the BaseComponent’s channel attribute. This may be overridden by specifying a different
channel as a keyword parameter of the decorator (channel=...).

Keyword argument priority influences the order in which handlers for a specific event are invoked. The
higher the priority, the earlier the handler is executed.

If you want to override a handler defined in a base class of your component, you must specify
override=True, else your method becomes an additional handler for the event.

Return value

Normally, the results returned by the handlers for an event are simply collected in the circuits.core.
events.Event’s value attribute. As a special case, a handler may return a types.GeneratorType.
This signals to the dispatcher that the handler isn’t ready to deliver a result yet. Rather, it has interrupted it’s
execution with a yield None statement, thus preserving its current execution state.

The dispatcher saves the returned generator object as a task. All tasks are reexamined (i.e. their next()method
is invoked) when the pending events have been executed.

This feature avoids an unnecessarily complicated chaining of event handlers. Imagine a handler A that needs the
results from firing an event E in order to complete. Then without this feature, the final action of A would be to
fire event E, and another handler for an event SuccessE would be required to complete handler A’s operation,
now having the result from invoking E available (actually it’s even a bit more complicated).

Using this “suspend” feature, the handler simply fires event E and then yields None until e.g. it finds a result in
E’s value attribute. For the simplest scenario, there even is a utility method circuits.core.manager.
Manager.callEvent() that combines firing and waiting.

circuits.core.handlers.reprhandler(handler)

circuits.core.helpers module

class circuits.core.helpers.FallBackExceptionHandler(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

If there is no handler for error events in the component hierarchy, this component’s handler is added automati-
cally. It simply prints the error information on stderr.

2.5. API Documentation 65

circuits Documentation, Release 3.2.2

initializes x; see x.__class__.__doc__ for signature

class circuits.core.helpers.FallBackGenerator(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

resume()
Implements the resume method as required from components that handle GenerateEvents.

class circuits.core.helpers.FallBackSignalHandler(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

If there is no handler for signal events in the component hierarchy, this component’s handler is added automati-
cally. It simply terminates the system if the signal is SIGINT or SIGTERM.

initializes x; see x.__class__.__doc__ for signature

circuits.core.loader module

This module implements a generic Loader suitable for dynamically loading components from other modules. This
supports loading from local paths, eggs and zip archives. Both setuptools and distribute are fully supported.

class circuits.core.loader.Loader(auto_register=True, init_args=None, init_kwargs=None,
paths=None, channel=’loader’)

Bases: circuits.core.components.BaseComponent

Create a new Loader Component

Creates a new Loader Component that enables dynamic loading of components from modules either in local
paths, eggs or zip archives.

initializes x; see x.__class__.__doc__ for signature

channel = 'loader'

load(name)

circuits.core.manager module

This module defines the Manager class.

class circuits.core.manager.CallValue(value)
Bases: object

class circuits.core.manager.ExceptionWrapper(exception)
Bases: object

extract()

class circuits.core.manager.Manager(*args, **kwargs)
Bases: object

The manager class has two roles. As a base class for component implementation, it provides methods for event
and handler management. The method fireEvent() appends a new event at the end of the event queue for
later execution. waitEvent() suspends the execution of a handler until all handlers for a given event have
been invoked. callEvent() combines the last two methods in a single method.

The methods addHandler() and removeHandler() allow handlers for events to be added and removed
dynamically. (The more common way to register a handler is to use the handler() decorator or derive the
class from Component.)

66 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

In its second role, the Manager takes the role of the event executor. Every component hierarchy has a root
component that maintains a queue of events. Firing an event effectively means appending it to the event queue
maintained by the root manager. The flush() method removes all pending events from the queue and, for
each event, invokes all the handlers. Usually, flush() is indirectly invoked by run().

The manager optionally provides information about the execution of events as automatically generated events.
If an Event has its success attribute set to True, the manager fires a Success event if all handlers have
been executed without error. Note that this event will be enqueued (and dispatched) immediately after the events
that have been fired by the event’s handlers. So the success event indicates both the successful invocation of all
handlers for the event and the processing of the immediate follow-up events fired by those handlers.

Sometimes it is not sufficient to know that an event and its immediate follow-up events have been processed.
Rather, it is important to know when all state changes triggered by an event, directly or indirectly, have been
performed. This also includes the processing of events that have been fired when invoking the handlers for
the follow-up events and the processing of events that have again been fired by those handlers and so on. The
completion of the processing of an event and all its direct or indirect follow-up events may be indicated by a
Complete event. This event is generated by the manager if Event has its complete attribute set to True.

Apart from the event queue, the root manager also maintains a list of tasks, actually Python generators, that are
updated when the event queue has been flushed.

initializes x; see x.__class__.__doc__ for signature

addHandler(f)

call(event, *channels, **kwargs)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

callEvent(event, *channels, **kwargs)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

fire(event, *channels, **kwargs)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

fireEvent(event, *channels, **kwargs)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

2.5. API Documentation 67

circuits Documentation, Release 3.2.2

flush()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

flushEvents()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

getHandlers(event, channel, **kwargs)

join()

name
Return the name of this Component/Manager

pid
Return the process id of this Component/Manager

processTask(event, task, parent=None)

registerChild(component)

registerTask(g)

removeHandler(method, event=None)

run(socket=None)
Run this manager. The method fires the Started event and then continuously calls tick().

The method returns when the manager’s stop() method is invoked.

If invoked by a programs main thread, a signal handler for the INT and TERM signals is installed. This
handler fires the corresponding Signal events and then calls stop() for the manager.

running
Return the running state of this Component/Manager

start(process=False, link=None)
Start a new thread or process that invokes this manager’s run() method. The invocation of this method
returns immediately after the task or process has been started.

stop(code=None)
Stop this manager. Invoking this method causes an invocation of run() to return.

tick(timeout=-1)
Execute all possible actions once. Process all registered tasks and flush the event queue. If the application
is running fire a GenerateEvents to get new events from sources.

This method is usually invoked from run(). It may also be used to build an application specific main
loop.

Parameters timeout (float, measuring seconds) – the maximum waiting time
spent in this method. If negative, the method may block until at least one action has been
taken.

unregisterChild(component)

unregisterTask(g)

wait(event, *channels, **kwargs)

waitEvent(event, *channels, **kwargs)

class circuits.core.manager.Sleep(seconds)
Bases: circuits.six.Iterator

68 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

expired

task

exception circuits.core.manager.TimeoutError
Bases: exceptions.Exception

Raised if wait event timeout occurred

exception circuits.core.manager.UnregistrableError
Bases: exceptions.Exception

Raised if a component cannot be registered as child.

circuits.core.manager.sleep(seconds)
Delay execution of a coroutine for a given number of seconds. The argument may be a floating point number
for subsecond precision.

circuits.core.pollers module

Poller Components for asynchronous file and socket I/O.

This module contains Poller components that enable polling of file or socket descriptors for read/write events. Pollers:
- Select - Poll - EPoll

class circuits.core.pollers.BasePoller(channel=None)
Bases: circuits.core.components.BaseComponent

addReader(source, fd)

addWriter(source, fd)

channel = None

discard(fd)

getTarget(fd)

isReading(fd)

isWriting(fd)

removeReader(fd)

removeWriter(fd)

resume()

circuits.core.pollers.Poller
alias of circuits.core.pollers.Select

class circuits.core.pollers.Select(...) → new Select Poller Component
Bases: circuits.core.pollers.BasePoller

Creates a new Select Poller Component that uses the select poller implementation. This poller is not rec-
ommended but is available for legacy reasons as most systems implement select-based polling for backwards
compatibility.

channel = 'select'

class circuits.core.pollers.Poll(...) → new Poll Poller Component
Bases: circuits.core.pollers.BasePoller

Creates a new Poll Poller Component that uses the poll poller implementation.

2.5. API Documentation 69

circuits Documentation, Release 3.2.2

addReader(source, fd)

addWriter(source, fd)

channel = 'poll'

discard(fd)

removeReader(fd)

removeWriter(fd)

class circuits.core.pollers.EPoll(...) → new EPoll Poller Component
Bases: circuits.core.pollers.BasePoller

Creates a new EPoll Poller Component that uses the epoll poller implementation.

addReader(source, fd)

addWriter(source, fd)

channel = 'epoll'

discard(fd)

removeReader(fd)

removeWriter(fd)

class circuits.core.pollers.KQueue(...) → new KQueue Poller Component
Bases: circuits.core.pollers.BasePoller

Creates a new KQueue Poller Component that uses the kqueue poller implementation.

addReader(source, sock)

addWriter(source, sock)

channel = 'kqueue'

discard(sock)

removeReader(sock)

removeWriter(sock)

circuits.core.timers module

Timer component to facilitate timed events.

class circuits.core.timers.Timer(interval, event, *channels, **kwargs)
Bases: circuits.core.components.BaseComponent

Timer Component

A timer is a component that fires an event once after a certain delay or periodically at a regular interval.

Parameters

• interval (datetime or number of seconds as a float) – the delay or interval to wait
for until the event is fired. If interval is specified as datetime, the interval is recalculated as
the time span from now to the given datetime.

• event (Event) – the event to fire.

70 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• persist (bool) – An optional keyword argument which if True will cause the event to
be fired repeatedly once per configured interval until the timer is unregistered. If False, the
event fires exactly once after the specified interval, and the timer is unregistered. Default:
False

expiry

reset(interval=None)
Reset the timer, i.e. clear the amount of time already waited for.

circuits.core.utils module

Utils

This module defines utilities used by circuits.

circuits.core.utils.findchannel(root, channel, all=False)

circuits.core.utils.findcmp(root, component, all=False)

circuits.core.utils.findroot(component)

circuits.core.utils.findtype(root, component, all=False)

circuits.core.utils.flatten(root, visited=None)

circuits.core.utils.safeimport(name)

circuits.core.values module

This defines the Value object used by components and events.

class circuits.core.values.Value(event=None, manager=None)
Bases: object

Create a new future Value Object

Creates a new future Value Object which is used by Event Objects and the Manager to store the result(s) of an
Event Handler’s exeuction of some Event in the system.

Parameters

• event (Event instance) – The Event this Value is associated with.

• manager (A Manager/Component instance.) – The Manager/Component used
to trigger notifications.

Variables

• result – True if this value has been changed.

• errors – True if while setting this value an exception occurred.

• notify – True or an event name to notify of changes to this value

This is a Future/Promise implementation.

getValue(recursive=True)

inform(force=False)

setValue(value)

2.5. API Documentation 71

circuits Documentation, Release 3.2.2

value
Value of this Value

circuits.core.workers module

Workers

Worker is a component used to perform “work” in independent threads or processes. Simply create an instance of
Worker() with either process=True to create a pool of workers using sub-processes for CPU-bound work or False (the
default) for a thread pool of workers for I/O bound work.

Then fire task() events with a function and *args and **kwargs to pass to the function when called from within the
workers.

class circuits.core.workers.Worker(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

A thread/process Worker Component

This Component creates a pool of workers (either a thread or process) and executures the supplied function from
a task() event passing supplied arguments and keyword-arguments to the function.

A task_success event is fired upon successful execution of the function and task_failure if it failed and threw an
exception. The task() event can also be “waited” upon by using the .call() and .wait() primitives.

Parameters process (bool) – True to start this Worker as a process (Thread otherwise)

initializes x; see x.__class__.__doc__ for signature

channel = 'worker'

init(process=False, workers=None, channel=’worker’)

class circuits.core.workers.task(f, *args, **kwargs)
Bases: circuits.core.events.Event

task Event

This Event is used to initiate a new task to be performed by a Worker

Parameters

• f (function) – The function to be executed.

• args (tuple) – Arguments to pass to the function

• kwargs (dict) – Keyword Arguments to pass to the function

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

failure = True

success = True

Module contents

Core

This package contains the essential core parts of the circuits framework.

72 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

circuits.core.handler(*names, **kwargs)
Creates an Event Handler

This decorator can be applied to methods of classes derived from circuits.core.components.
BaseComponent. It marks the method as a handler for the events passed as arguments to the @handler
decorator. The events are specified by their name.

The decorated method’s arguments must match the arguments passed to the circuits.core.events.
Event on creation. Optionally, the method may have an additional first argument named event. If declared, the
event object that caused the handler to be invoked is assigned to it.

By default, the handler is invoked by the component’s root Manager for events that are propagated on the
channel determined by the BaseComponent’s channel attribute. This may be overridden by specifying a different
channel as a keyword parameter of the decorator (channel=...).

Keyword argument priority influences the order in which handlers for a specific event are invoked. The
higher the priority, the earlier the handler is executed.

If you want to override a handler defined in a base class of your component, you must specify
override=True, else your method becomes an additional handler for the event.

Return value

Normally, the results returned by the handlers for an event are simply collected in the circuits.core.
events.Event’s value attribute. As a special case, a handler may return a types.GeneratorType.
This signals to the dispatcher that the handler isn’t ready to deliver a result yet. Rather, it has interrupted it’s
execution with a yield None statement, thus preserving its current execution state.

The dispatcher saves the returned generator object as a task. All tasks are reexamined (i.e. their next()method
is invoked) when the pending events have been executed.

This feature avoids an unnecessarily complicated chaining of event handlers. Imagine a handler A that needs the
results from firing an event E in order to complete. Then without this feature, the final action of A would be to
fire event E, and another handler for an event SuccessE would be required to complete handler A’s operation,
now having the result from invoking E available (actually it’s even a bit more complicated).

Using this “suspend” feature, the handler simply fires event E and then yields None until e.g. it finds a result in
E’s value attribute. For the simplest scenario, there even is a utility method circuits.core.manager.
Manager.callEvent() that combines firing and waiting.

class circuits.core.BaseComponent(*args, **kwargs)
Bases: circuits.core.manager.Manager

This is the base class for all components in a circuits based application. Components can (and should, except
for root components) be registered with a parent component.

BaseComponents can declare methods as event handlers using the handler decoration (see circuits.core.
handlers.handler()). The handlers are invoked for matching events from the component’s channel (spec-
ified as the component’s channel attribute).

BaseComponents inherit from circuits.core.manager.Manager. This provides components with the
circuits.core.manager.Manager.fireEvent()method that can be used to fire events as the result
of some computation.

Apart from the fireEvent() method, the Manager nature is important for root components that are started
or run.

Variables channel – a component can be associated with a specific channel by setting this at-
tribute. This should either be done by specifying a class attribute channel in the derived class
or by passing a keyword parameter channel=”. . . ” to __init__. If specified, the component’s
handlers receive events on the specified channel only, and events fired by the component will
be sent on the specified channel (this behavior may be overridden, see Event, fireEvent()

2.5. API Documentation 73

circuits Documentation, Release 3.2.2

and handler()). By default, the channel attribute is set to “*”, meaning that events are fired
on all channels and received from all channels.

initializes x; see x.__class__.__doc__ for signature

channel = '*'

classmethod events()
Returns a list of all events this Component listens to

classmethod handlers()
Returns a list of all event handlers for this Component

classmethod handles(*names)
Returns True if all names are event handlers of this Component

register(parent)
Inserts this component in the component tree as a child of the given parent node.

Parameters parent (Manager) – the parent component after registration has completed.

This method fires a Registered event to inform other components in the tree about the new member.

unregister()
Removes this component from the component tree.

Removing a component from the component tree is a two stage process. First, the component is marked
as to be removed, which prevents it from receiving further events, and a prepare_unregister event
is fired. This allows other components to e.g. release references to the component to be removed before it
is actually removed from the component tree.

After the processing of the prepare_unregister event has completed, the component is removed
from the tree and an unregistered event is fired.

unregister_pending

class circuits.core.Component(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

class circuits.core.Event(*args, **kwargs)
Bases: object

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

74 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

alert_done = False

cancel()
Cancel the event from being processed (if not already)

channels = ()

child(name, *args, **kwargs)

complete = False

classmethod create(_name, *args, **kwargs)

failure = False

notify = False

parent = None

stop()
Stop further processing of this event

success = False

waitingHandlers = 0

class circuits.core.task(f, *args, **kwargs)
Bases: circuits.core.events.Event

task Event

This Event is used to initiate a new task to be performed by a Worker

Parameters

• f (function) – The function to be executed.

• args (tuple) – Arguments to pass to the function

• kwargs (dict) – Keyword Arguments to pass to the function

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

failure = True

success = True

class circuits.core.Worker(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

A thread/process Worker Component

2.5. API Documentation 75

circuits Documentation, Release 3.2.2

This Component creates a pool of workers (either a thread or process) and executures the supplied function from
a task() event passing supplied arguments and keyword-arguments to the function.

A task_success event is fired upon successful execution of the function and task_failure if it failed and threw an
exception. The task() event can also be “waited” upon by using the .call() and .wait() primitives.

Parameters process (bool) – True to start this Worker as a process (Thread otherwise)

initializes x; see x.__class__.__doc__ for signature

channel = 'worker'

init(process=False, workers=None, channel=’worker’)

class circuits.core.ipc(event, channel=None)
Bases: circuits.core.events.Event

ipc Event

Send an event to a child/parent process

Parameters

• event (circuits.core.events.Event) – Event to execute remotely.

• channel (str) – IPC Channel (channel to use on child/parent).

class circuits.core.Bridge(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = 'bridge'

init(socket, channel=’bridge’)

class circuits.core.Debugger(errors=True, events=True, file=None, logger=None, prefix=None,
trim=None, **kwargs)

Bases: circuits.core.components.BaseComponent

Create a new Debugger Component

Creates a new Debugger Component that listens to all events in the system printing each event to sys.stderr or a
Logger Component.

Variables

• IgnoreEvents – list of events (str) to ignore

• IgnoreChannels – list of channels (str) to ignore

• enabled – Enabled/Disabled flag

Parameters log – Logger Component instance or None (default)

initializes x; see x.__class__.__doc__ for signature

IgnoreChannels = []

IgnoreEvents = ['generate_events']

class circuits.core.Timer(interval, event, *channels, **kwargs)
Bases: circuits.core.components.BaseComponent

Timer Component

A timer is a component that fires an event once after a certain delay or periodically at a regular interval.

Parameters

76 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• interval (datetime or number of seconds as a float) – the delay or interval to wait
for until the event is fired. If interval is specified as datetime, the interval is recalculated as
the time span from now to the given datetime.

• event (Event) – the event to fire.

• persist (bool) – An optional keyword argument which if True will cause the event to
be fired repeatedly once per configured interval until the timer is unregistered. If False, the
event fires exactly once after the specified interval, and the timer is unregistered. Default:
False

expiry

reset(interval=None)
Reset the timer, i.e. clear the amount of time already waited for.

class circuits.core.Manager(*args, **kwargs)
Bases: object

The manager class has two roles. As a base class for component implementation, it provides methods for event
and handler management. The method fireEvent() appends a new event at the end of the event queue for
later execution. waitEvent() suspends the execution of a handler until all handlers for a given event have
been invoked. callEvent() combines the last two methods in a single method.

The methods addHandler() and removeHandler() allow handlers for events to be added and removed
dynamically. (The more common way to register a handler is to use the handler() decorator or derive the
class from Component.)

In its second role, the Manager takes the role of the event executor. Every component hierarchy has a root
component that maintains a queue of events. Firing an event effectively means appending it to the event queue
maintained by the root manager. The flush() method removes all pending events from the queue and, for
each event, invokes all the handlers. Usually, flush() is indirectly invoked by run().

The manager optionally provides information about the execution of events as automatically generated events.
If an Event has its success attribute set to True, the manager fires a Success event if all handlers have
been executed without error. Note that this event will be enqueued (and dispatched) immediately after the events
that have been fired by the event’s handlers. So the success event indicates both the successful invocation of all
handlers for the event and the processing of the immediate follow-up events fired by those handlers.

Sometimes it is not sufficient to know that an event and its immediate follow-up events have been processed.
Rather, it is important to know when all state changes triggered by an event, directly or indirectly, have been
performed. This also includes the processing of events that have been fired when invoking the handlers for
the follow-up events and the processing of events that have again been fired by those handlers and so on. The
completion of the processing of an event and all its direct or indirect follow-up events may be indicated by a
Complete event. This event is generated by the manager if Event has its complete attribute set to True.

Apart from the event queue, the root manager also maintains a list of tasks, actually Python generators, that are
updated when the event queue has been flushed.

initializes x; see x.__class__.__doc__ for signature

addHandler(f)

call(event, *channels, **kwargs)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This
method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

callEvent(event, *channels, **kwargs)
Fire the given event to the specified channels and suspend execution until it has been dispatched. This

2.5. API Documentation 77

circuits Documentation, Release 3.2.2

method may only be invoked as argument to a yield on the top execution level of a handler (e.g. “yield
self.callEvent(event)”). It effectively creates and returns a generator that will be invoked by the
main loop until the event has been dispatched (see circuits.core.handlers.handler()).

fire(event, *channels, **kwargs)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

fireEvent(event, *channels, **kwargs)
Fire an event into the system.

Parameters

• event – The event that is to be fired.

• channels – The channels that this event is delivered on. If no channels are specified, the
event is delivered to the channels found in the event’s channel attribute. If this attribute
is not set, the event is delivered to the firing component’s channel. And eventually, when
set neither, the event is delivered on all channels (“*”).

flush()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

flushEvents()
Flush all Events in the Event Queue. If called on a manager that is not the root of an object hierarchy, the
invocation is delegated to the root manager.

getHandlers(event, channel, **kwargs)

join()

name
Return the name of this Component/Manager

pid
Return the process id of this Component/Manager

processTask(event, task, parent=None)

registerChild(component)

registerTask(g)

removeHandler(method, event=None)

run(socket=None)
Run this manager. The method fires the Started event and then continuously calls tick().

The method returns when the manager’s stop() method is invoked.

If invoked by a programs main thread, a signal handler for the INT and TERM signals is installed. This
handler fires the corresponding Signal events and then calls stop() for the manager.

running
Return the running state of this Component/Manager

78 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

start(process=False, link=None)
Start a new thread or process that invokes this manager’s run() method. The invocation of this method
returns immediately after the task or process has been started.

stop(code=None)
Stop this manager. Invoking this method causes an invocation of run() to return.

tick(timeout=-1)
Execute all possible actions once. Process all registered tasks and flush the event queue. If the application
is running fire a GenerateEvents to get new events from sources.

This method is usually invoked from run(). It may also be used to build an application specific main
loop.

Parameters timeout (float, measuring seconds) – the maximum waiting time
spent in this method. If negative, the method may block until at least one action has been
taken.

unregisterChild(component)

unregisterTask(g)

wait(event, *channels, **kwargs)

waitEvent(event, *channels, **kwargs)

exception circuits.core.TimeoutError
Bases: exceptions.Exception

Raised if wait event timeout occurred

circuits.io package

Submodules

circuits.io.events module

I/O Events

This module implements commonly used I/O events used by other I/O modules.

class circuits.io.events.accessed(*args, **kwargs)
Bases: circuits.core.events.Event

accessed Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

2.5. API Documentation 79

circuits Documentation, Release 3.2.2

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.close(*args, **kwargs)
Bases: circuits.core.events.Event

close Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

80 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.closed(*args, **kwargs)
Bases: circuits.core.events.Event

closed Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.created(*args, **kwargs)
Bases: circuits.core.events.Event

created Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to

2.5. API Documentation 81

circuits Documentation, Release 3.2.2

as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.deleted(*args, **kwargs)
Bases: circuits.core.events.Event

deleted Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

82 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.eof(*args, **kwargs)
Bases: circuits.core.events.Event

eof Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.error(*args, **kwargs)
Bases: circuits.core.events.Event

error Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

2.5. API Documentation 83

circuits Documentation, Release 3.2.2

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.modified(*args, **kwargs)
Bases: circuits.core.events.Event

modified Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

84 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.moved(*args, **kwargs)
Bases: circuits.core.events.Event

moved Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.open(*args, **kwargs)
Bases: circuits.core.events.Event

open Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

2.5. API Documentation 85

circuits Documentation, Release 3.2.2

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.opened(*args, **kwargs)
Bases: circuits.core.events.Event

opened Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

86 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.read(*args, **kwargs)
Bases: circuits.core.events.Event

read Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.ready(*args, **kwargs)
Bases: circuits.core.events.Event

ready Event

2.5. API Documentation 87

circuits Documentation, Release 3.2.2

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.seek(*args, **kwargs)
Bases: circuits.core.events.Event

seek Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

88 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.started(*args, **kwargs)
Bases: circuits.core.events.Event

started Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

2.5. API Documentation 89

circuits Documentation, Release 3.2.2

class circuits.io.events.stopped(*args, **kwargs)
Bases: circuits.core.events.Event

stopped Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.unmounted(*args, **kwargs)
Bases: circuits.core.events.Event

unmounted Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

90 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.io.events.write(*args, **kwargs)
Bases: circuits.core.events.Event

write Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

2.5. API Documentation 91

circuits Documentation, Release 3.2.2

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

circuits.io.file module

File I/O

This module implements a wrapper for basic File I/O.

class circuits.io.file.File(*args, **kwargs)
Bases: circuits.core.components.Component

initializes x; see x.__class__.__doc__ for signature

channel = 'file'

close()

closed

filename

init(filename, mode=’r’, bufsize=4096, encoding=None, channel=’file’)

mode

seek(offset, whence=0)

write(data)

circuits.io.notify module

circuits.io.process module

Process

This module implements a wrapper for basic subprocess.Popen functionality.

class circuits.io.process.Process(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = 'process'

init(args, cwd=None, shell=False)

kill()

signal(signal)

start()
Start a new thread or process that invokes this manager’s run() method. The invocation of this method
returns immediately after the task or process has been started.

status

stop()
Stop this manager. Invoking this method causes an invocation of run() to return.

wait()

92 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

write(data)

class circuits.io.process.terminated(*args)
Bases: circuits.core.events.Event

terminated Event

This Event is sent when a process is completed

Parameters args – (process)

circuits.io.serial module

Serial I/O

This module implements basic Serial (RS232) I/O.

class circuits.io.serial.Serial(port, baudrate=115200, bufsize=4096, timeout=0.2,
encoding=’UTF-8’, readline=False, channel=’serial’)

Bases: circuits.core.components.Component

channel = 'serial'

close()

write(data)

Module contents

I/O Support

This package contains various I/O Components. Provided are a generic File Component, StdIn, StdOut and StdErr
components. Instances of StdIn, StdOut and StdErr are also created by importing this package.

circuits.net package

Submodules

circuits.net.events module

Networking Events

This module implements commonly used Networking events used by socket components.

class circuits.net.events.broadcast(*args)
Bases: circuits.core.events.Event

broadcast Event

This Event is used by the UDPServer/UDPClient sockets to send a message on the <broadcast> network.

Note:

• This event is never sent, it is used to send data.

• This event is used for both Client and Server UDP Components.

2.5. API Documentation 93

circuits Documentation, Release 3.2.2

Parameters args – (data, port)

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

class circuits.net.events.close(*args)
Bases: circuits.core.events.Event

close Event

This Event is used to notify a client, client connection or server that we want to close.

Note:

• This event is never sent, it is used to close.

• This event is used for both Client and Server Components.

Parameters args – Client: () Server: (sock)

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

class circuits.net.events.closed(*args, **kwargs)
Bases: circuits.core.events.Event

closed Event

This Event is sent when a server has closed its listening socket.

Note: This event is for Server components.

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

94 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.net.events.connect(*args, **kwargs)
Bases: circuits.core.events.Event

connect Event

This Event is sent when a new client connection has arrived on a server. This event is also used for client’s to
initiate a new connection to a remote host.

Note: This event is used for both Client and Server Components.

Parameters

• args (tuple) – Client: (host, port) Server: (sock, host, port)

• kwargs (dict) – Client: (ssl)

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

class circuits.net.events.connected(host, port)
Bases: circuits.core.events.Event

connected Event

This Event is sent when a client has successfully connected.

Note: This event is for Client Components.

Parameters

• host – The hostname connected to.

• port – The port connected to

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

class circuits.net.events.disconnect(*args, **kwargs)
Bases: circuits.core.events.Event

disconnect Event

This Event is sent when a client connection has closed on a server. This event is also used for client’s to
disconnect from a remote host.

Note: This event is used for both Client and Server Components.

Parameters args – Client: () Server: (sock)

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

2.5. API Documentation 95

circuits Documentation, Release 3.2.2

class circuits.net.events.disconnected
Bases: circuits.core.events.Event

disconnected Event

This Event is sent when a client has disconnected

Note: This event is for Client Components.

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

class circuits.net.events.error(*args)
Bases: circuits.core.events.Event

error Event

This Event is sent when a client or server connection has an error.

Note: This event is used for both Client and Server Components.

Parameters args – Client: (error) Server: (sock, error)

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

class circuits.net.events.read(*args)
Bases: circuits.core.events.Event

read Event

This Event is sent when a client or server connection has read any data.

Note: This event is used for both Client and Server Components.

Parameters args – Client: (data) Server: (sock, data)

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

class circuits.net.events.ready(component, bind=None)
Bases: circuits.core.events.Event

ready Event

This Event is used to notify the rest of the system that the underlying Client or Server Component is ready
to begin processing connections or incoming/outgoing data. (This is triggered as a direct result of having the
capability to support multiple client/server components with a single poller component instance in a system).

Note: This event is used for both Client and Server Components.

Parameters

• component – The Client/Server Component that is ready.

• bind – The (host, port) the server has bound to.

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

96 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

class circuits.net.events.starttls(sock)
Bases: circuits.core.events.Event

starttls Event

This event can be fired to upgrade the socket connection to a TLS secured connection.

Note: This event is currently only available for Server Components.

Parameters sock (socket.socket) – The client socket where to start TLS.

class circuits.net.events.unreachable(host, port, reason=None)
Bases: circuits.core.events.Event

unreachable Event

This Event is sent when a server is unreachable for a client

Parameters

• host – Server hostname or IP

• port – Server port

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

class circuits.net.events.write(*args)
Bases: circuits.core.events.Event

write Event

This Event is used to notify a client, client connection or server that we have data to be written.

Note:

• This event is never sent, it is used to send data.

• This event is used for both Client and Server Components.

Parameters args – Client: (data) Server: (sock, data)

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

circuits.net.sockets module

Socket Components

This module contains various Socket Components for use with Networking.

class circuits.net.sockets.Client(bind=None, bufsize=4096, channel=’client’, **kwargs)
Bases: circuits.core.components.BaseComponent

channel = 'client'

close()

connected

parse_bind_parameter(bind_parameter)

2.5. API Documentation 97

circuits Documentation, Release 3.2.2

socket_family = 2

socket_options = []

socket_protocol = 0

socket_type = 1

write(data)

circuits.net.sockets.Pipe(*channels, **kwargs)
Create a new full duplex Pipe

Returns a pair of UNIXClient instances connected on either side of the pipe.

class circuits.net.sockets.Server(bind, secure=False, backlog=5000, bufsize=4096, chan-
nel=’server’, **kwargs)

Bases: circuits.core.components.BaseComponent

channel = 'server'

close(sock=None)

connected

host

parse_bind_parameter(bind_parameter)

port

socket_protocol = 0

starttls(sock)

write(sock, data)

class circuits.net.sockets.TCP6Client(bind=None, bufsize=4096, channel=’client’,
**kwargs)

Bases: circuits.net.sockets.TCPClient

parse_bind_parameter(bind_parameter)

socket_family = 10

class circuits.net.sockets.TCP6Server(bind, secure=False, backlog=5000, bufsize=4096,
channel=’server’, **kwargs)

Bases: circuits.net.sockets.TCPServer

parse_bind_parameter(bind_parameter)

socket_family = 10

class circuits.net.sockets.TCPClient(bind=None, bufsize=4096, channel=’client’,
**kwargs)

Bases: circuits.net.sockets.Client

connect(host, port, secure=False, **kwargs)

init(connect_timeout=5, *args, **kwargs)

socket_family = 2

socket_options = [(6, 1, 1)]

socket_protocol = 6

socket_type = 1

98 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

class circuits.net.sockets.TCPServer(bind, secure=False, backlog=5000, bufsize=4096,
channel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

parse_bind_parameter(bind_parameter)

socket_family = 2

socket_options = [(1, 2, 1), (6, 1, 1)]

socket_type = 1

circuits.net.sockets.UDP6Client
alias of circuits.net.sockets.UDP6Server

class circuits.net.sockets.UDP6Server(bind, secure=False, backlog=5000, bufsize=4096,
channel=’server’, **kwargs)

Bases: circuits.net.sockets.UDPServer

parse_bind_parameter(bind_parameter)

socket_family = 10

circuits.net.sockets.UDPClient
alias of circuits.net.sockets.UDPServer

class circuits.net.sockets.UDPServer(bind, secure=False, backlog=5000, bufsize=4096,
channel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

broadcast(data, port)

close()

socket_family = 2

socket_options = [(1, 6, 1), (1, 2, 1)]

socket_type = 2

write(address, data)

class circuits.net.sockets.UNIXClient(bind=None, bufsize=4096, channel=’client’,
**kwargs)

Bases: circuits.net.sockets.Client

connect(path, secure=False, **kwargs)

ready(component)

socket_family = 1

socket_options = []

socket_type = 1

class circuits.net.sockets.UNIXServer(bind, secure=False, backlog=5000, bufsize=4096,
channel=’server’, **kwargs)

Bases: circuits.net.sockets.Server

socket_family = 1

socket_options = [(1, 2, 1)]

socket_type = 1

circuits.net.sockets.do_handshake(sock, on_done=None, on_error=None, extra_args=None)
SSL Async Handshake

2.5. API Documentation 99

circuits Documentation, Release 3.2.2

Parameters

• on_done – Function called when handshake is complete

• on_error – Function called when handshake errored

circuits.net.sockets.parse_ipv4_parameter(bind_parameter)

circuits.net.sockets.parse_ipv6_parameter(bind_parameter)

Module contents

Networking Components

This package contains components that implement network sockets and protocols for implementing client and server
network applications.

circuits.node package

Submodules

circuits.node.client module

class circuits.node.client.Client(host, port, channel=’node_client’, re-
ceive_event_firewall=None, send_event_firewall=None,
**kwargs)

Bases: circuits.core.components.BaseComponent

Node Client (peer)

Create new connection for a node.

Parameters

• hostname (str) – hostname to connect.

• port (int) – port to connect.

• channel (str) – An optional keyword argument which if defined, set channel used for
node event. Default: node_client

• receive_event_firewall (method) – An optional keyword argument which if de-
fined, function or method to call for check if event is allowed for sending. Default: None
(no firewall)

• send_event_firewall (method) – An optional keyword argument which if defined,
function or method to call for check if event is allowed for executing Default: None (no
firewall)

channel = 'node_client'

close()
Close the connection

connect()
Create the connection

send(event)
Send event through the connection

100 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

Parameters event (circuits.core.events.Event) – Event to send.

Returns The result object of the sended event

Return type generator

circuits.node.events module

class circuits.node.events.connected_to(connection_name, hostname, port, client_channel,
client_obj)

Bases: circuits.core.events.Event

Connected to a peer

Parameters

• connection_name (str) – Connection name.

• hostname (str) – hostname of the remote system.

• port (int) – connection port of the remote system.

• client_channel (str) – Channel used for client event.

• client_obj (circuits.net.sockets.Client) – Client object.

class circuits.node.events.disconnected_from(connection_name, hostname, port,
client_channel, client_obj)

Bases: circuits.node.events.connected_to

Disconnected from a peer

Parameters

• connection_name (str) – Connection name.

• hostname (str) – hostname of the remote system.

• port (int) – connection port of the remote system.

• client_channel (str) – Channel used for client event.

• client_obj (circuits.net.sockets.Client) – Client object.

class circuits.node.events.remote(event, connection_name, channel=None)
Bases: circuits.core.events.Event

send event to a peer

Parameters

• event (circuits.core.events.Event) – Event to execute remotely.

• connection_name (str) – Connection name.

• channel (str) – Remote channel (channel to use on peer).

circuits.node.node module

Node

this module manage node (start server, add peer, . . .) .. seealso:: Examples in :dir:‘examples.node‘

2.5. API Documentation 101

circuits Documentation, Release 3.2.2

class circuits.node.node.Node(port=None, channel=’node’, **kwargs)
Bases: circuits.core.components.BaseComponent

this class manage node (start server, add peer, . . .) .. seealso:: Examples in :dir:‘examples.node‘

Start node system.

Parameters

• port (int) – An optional keyword argument which if defined, start server on this port.
Default: None (don’t start the server)

• server_ip (str) – An optional keyword argument which define ip where the socket has
listen to. Default: 0.0.0.0 (all ip is allowed)

• channel (str) – An optional keyword argument which if defined, set channel used for
node event. Default: node

• receive_event_firewall (method) – An optional keyword argument which if de-
fined, set function or method to call to check if event is allowed for sending. Default: None
(no firewall)

• send_event_firewall (method) – An optional keyword argument which if defined,
set function or method to call to check if event is allowed for executing Default: None (no
firewall)

add(connection_name, hostname, port, **kwargs)
Add new peer to the node.

Parameters

• connection_name (str) – Connection name.

• hostname (str) – hostname of the remote node.

• port (int) – port of the remote node.

• auto_remote_event (dict) – An optional keyword argument which if defined, bind
events automatically to remote execution. Default: {} (no events)

• channel (str) – An optional keyword argument which if defined, set channel used for
client event. If this keyword is not defined the method will generate the channel name
automatically.

• reconnect_delay (int) – An optional keyword argument which if defined, set auto
reconnect delay. Default: 10 (seconde)

• receive_event_firewall (method) – An optional keyword argument which if
defined, function or method to call for check if event is allowed for sending. Default:
None (no firewall)

• send_event_firewall (method) – An optional keyword argument which if de-
fined, setfunction or method to call to check if event is allowed for executing Default:
None (no firewall)

Returns Channel used on client event.

Return type str

channel = 'node'

get_connection_names()
Get connections names

Returns The list of connections names

102 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

Return type list of str

get_peer(connection_name)
Get a client object by name

Parameters connection_name (str) – Connection name.

Returns The Client object

Return type circuits.node.client.Client

circuits.node.server module

class circuits.node.server.Server(port, server_ip=’0.0.0.0’, channel=’node’, re-
ceive_event_firewall=None, send_event_firewall=None,
**kwargs)

Bases: circuits.core.components.BaseComponent

Node server.

Create server on node system.

Parameters

• port (int) – start server on this port.

• server_ip (str) – An optional keyword argument which which define ip where the
socket has listen to. Default: 0.0.0.0 (all ip is allowed)

• channel (str) – An optional keyword argument which if defined, set channel used for
node event. Default: node

• receive_event_firewall (method) – An optional keyword argument which if de-
fined, set function or method to call to check if event is allowed for sending Default: None
(no firewall)

• send_event_firewall (method) – An optional keyword argument which if defined,
set function or method to call to check if event is allowed for executing Default: None (no
firewall)

channel = 'node'

get_socks()
Get clients sockets list

Returns The list of client socket

Return type list of socket.socket

host

port

send(event, sock, no_result=False)
Send event to peer

Parameters

• event (circuits.core.events.Event) – Event to execute remotely.

• sock (socket.socket) – Client’s socket (peer selection).

• no_result (bool) – An optional keyword argument which if True don’t return the
event result. Default: False (wait the result)

2.5. API Documentation 103

circuits Documentation, Release 3.2.2

Returns The result of remote event

Return type generator

send_all(event)
Send event to all peer

Parameters event (circuits.core.events.Event) – Event to execute remotely.

send_to(event, socks)
Send event to multiple peer

Parameters

• event (circuits.core.events.Event) – Event to execute remotely.

• socks (list of socket.socket) – Client’s socket list (peer selection).

circuits.node.utils module

circuits.node.utils.dump_event(e, id)

circuits.node.utils.dump_value(v)

circuits.node.utils.load_event(s)

circuits.node.utils.load_value(v)

Module contents

Node

Distributed processing support for circuits.

circuits.protocols package

Submodules

circuits.protocols.http module

class circuits.protocols.http.HTTP(encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

channel = 'web'

class circuits.protocols.http.ResponseObject(headers, status, version)
Bases: object

read()

class circuits.protocols.http.request(*args, **kwargs)
Bases: circuits.core.events.Event

request Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

104 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

class circuits.protocols.http.response(*args, **kwargs)
Bases: circuits.core.events.Event

response Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

2.5. API Documentation 105

circuits Documentation, Release 3.2.2

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

circuits.protocols.irc module

Internet Relay Chat Protocol

This package implements the Internet Relay Chat Protocol or commonly known as IRC. Support for both server and
client is implemented.

circuits.protocols.line module

Line Protocol

This module implements the basic Line protocol.

This module can be used in both server and client implementations.

class circuits.protocols.line.Line(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

Line Protocol

Implements the Line Protocol.

Incoming data is split into lines with a splitter function. For each line of data processed a Line Event is created.
Any unfinished lines are appended into an internal buffer.

A custom line splitter function can be passed to customize how data is split into lines. This function must accept
two arguments, the data to process and any left over data from a previous invocation of the splitter function. The
function must also return a tuple of two items, a list of lines and any left over data.

Parameters splitter (function) – a line splitter function

This Component operates in two modes. In normal operation it’s expected to be used in conjunction with com-
ponents that expose a Read Event on a “read” channel with only one argument (data). Some builtin components
that expose such events are: - circuits.net.sockets.TCPClient - circuits.io.File

The second mode of operation works with circuits.net.sockets.Server components such as TCPServer,
UNIXServer, etc. It’s expected that two arguments exist in the Read Event, sock and data. The following
two arguments can be passed to affect how unfinished data is stored and retrieved for such components:

Parameters getBuffer (function) – function to retrieve the buffer for a client sock

This function must accept one argument (sock,) the client socket whoose buffer is to be retrieved.

Parameters updateBuffer (function) – function to update the buffer for a client sock

106 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

This function must accept two arguments (sock, buffer,) the client socket and the left over buffer to be updated.

@note: This Component must be used in conjunction with a Component that exposes Read events on a
“read” Channel.

initializes x; see x.__class__.__doc__ for signature

class circuits.protocols.line.line(*args, **kwargs)
Bases: circuits.core.events.Event

line Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

circuits.protocols.line.splitLines(s, buffer)→ lines, buffer
Append s to buffer and find any new lines of text in the string splitting at the standard IRC delimiter CRLF. Any
new lines found, return them as a list and the remaining buffer for further processing.

circuits.protocols.websocket module

class circuits.protocols.websocket.WebSocketCodec(sock=None, data=bytearray(b”),
*args, **kwargs)

Bases: circuits.core.components.BaseComponent

WebSocket Protocol

2.5. API Documentation 107

circuits Documentation, Release 3.2.2

Implements the Data Framing protocol for WebSocket.

This component is used in conjunction with a parent component that receives Read events on its channel. When
created (after a successful WebSocket setup handshake), the codec registers a handler on the parent’s channel
that filters out these Read events for a given socket (if used in a server) or all Read events (if used in a client).
The data is decoded and the contained payload is emitted as Read events on the codec’s channel.

The data from write events sent to the codec’s channel (with socket argument if used in a server) is encoded
according to the WebSocket Data Framing protocol. The encoded data is then forwarded as write events on the
parents channel.

Creates a new codec.

Parameters sock – the socket used in Read and write events (if used in a server, else None)

channel = 'ws'

Module contents

Networking Protocols

This package contains components that implement various networking protocols.

circuits.tools package

Module contents

Circuits Tools

circuits.tools contains a standard set of tools for circuits. These tools are installed as executables with a prefix of
“circuits.”

circuits.tools.deprecated(f)

circuits.tools.edges(x, e=None, v=None, d=0)

circuits.tools.findroot(x)

circuits.tools.getargspec(func)

circuits.tools.graph(x, name=None)

Parameters

• x (Component or Manager) – A Component or Manager to graph

• name (str) – A name for the graph (defaults to x’s name)

circuits.tools.graph_ascii(x)
Display a directed graph of the Component structure of x

Parameters x (Component or Manager) – A Component or Manager to graph

@return: A directed graph representing x’s Component structure. @rtype: str

circuits.tools.graph_dot(x, name=None)

Parameters

• x (Component or Manager) – A Component or Manager to graph

• name (str) – A name for the graph (defaults to x’s name)

108 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

circuits.tools.graph_png(x, name=None)

Parameters

• x (Component or Manager) – A Component or Manager to graph

• name (str) – A name for the graph (defaults to x’s name)

circuits.tools.inspect(x)
Display an inspection report of the Component or Manager x

Parameters x (Component or Manager) – A Component or Manager to graph

@return: A detailed inspection report of x @rtype: str

circuits.tools.kill(x)

circuits.tools.tryimport(modules, obj=None, message=None)

circuits.tools.walk(x, f, d=0, v=None)

circuits.web package

Subpackages

circuits.web.dispatchers package

Submodules

circuits.web.dispatchers.dispatcher module

Dispatcher

This module implements a basic URL to Channel dispatcher. This is the default dispatcher used by circuits.web

class circuits.web.dispatchers.dispatcher.Dispatcher(**kwargs)
Bases: circuits.core.components.BaseComponent

channel = 'web'

circuits.web.dispatchers.dispatcher.find_handlers(req, paths)

circuits.web.dispatchers.dispatcher.resolve_methods(parts)

circuits.web.dispatchers.dispatcher.resolve_path(paths, parts)

circuits.web.dispatchers.jsonrpc module

JSON RPC

This module implements a JSON RPC dispatcher that translates incoming RPC calls over JSON into RPC events.

class circuits.web.dispatchers.jsonrpc.JSONRPC(path=None, encoding=’utf-8’,
rpc_channel=’*’)

Bases: circuits.core.components.BaseComponent

channel = 'web'

2.5. API Documentation 109

circuits Documentation, Release 3.2.2

class circuits.web.dispatchers.jsonrpc.rpc(*args, **kwargs)
Bases: circuits.core.events.Event

RPC Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

circuits.web.dispatchers.static module

Static

This modStatic implements a Static dispatcher used to serve up static resources and an optional apache-style directory
listing.

class circuits.web.dispatchers.static.Static(path=None, docroot=None, de-
faults=(’index.html’, ’index.xhtml’),
dirlisting=False, **kwargs)

Bases: circuits.core.components.BaseComponent

channel = 'web'

circuits.web.dispatchers.virtualhosts module

VirtualHost

110 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

This module implements a virtual host dispatcher that sends requests for configured virtual hosts to different dispatch-
ers.

class circuits.web.dispatchers.virtualhosts.VirtualHosts(domains)
Bases: circuits.core.components.BaseComponent

Forward to anotehr Dispatcher based on the Host header.

This can be useful when running multiple sites within one server. It allows several domains to point to different
parts of a single website structure. For example: - http://www.domain.example -> / - http://www.domain2.
example -> /domain2 - http://www.domain2.example:443 -> /secure

Parameters domains (dict) – a dict of {host header value: virtual prefix} pairs.

The incoming “Host” request header is looked up in this dict, and, if a match is found, the corresponding “virtual
prefix” value will be prepended to the URL path before passing the request onto the next dispatcher.

Note that you often need separate entries for “example.com” and “www.example.com”. In addition, “Host”
headers may contain the port number.

channel = 'web'

circuits.web.dispatchers.xmlrpc module

XML RPC

This module implements a XML RPC dispatcher that translates incoming RPC calls over XML into RPC events.

class circuits.web.dispatchers.xmlrpc.XMLRPC(path=None, encoding=’utf-8’,
rpc_channel=’*’)

Bases: circuits.core.components.BaseComponent

channel = 'web'

class circuits.web.dispatchers.xmlrpc.rpc(*args, **kwargs)
Bases: circuits.core.events.Event

rpc Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

2.5. API Documentation 111

http://www.domain.example
http://www.domain2.example
http://www.domain2.example
http://www.domain2.example:443

circuits Documentation, Release 3.2.2

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

Module contents

Dispatchers

This package contains various circuits.web dispatchers By default a circuits.web.Server Component uses the
dispatcher.Dispatcher

circuits.web.parsers package

Submodules

circuits.web.parsers.http module

class circuits.web.parsers.http.HttpParser(kind=2, decompress=False)
Bases: object

execute(data, length)

get_headers()

get_method()

get_path()

get_query_string()

get_scheme()

get_status_code()

get_url()

get_version()

is_chunked()
return True if Transfer-Encoding header value is chunked

is_headers_complete()
return True if all headers have been parsed.

is_message_begin()
return True if the parsing start

112 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

is_message_complete()
return True if the parsing is done (we get EOF)

is_partial_body()
return True if a chunk of body have been parsed

is_upgrade()
Do we get upgrade header in the request. Useful for websockets

recv_body()
return last chunk of the parsed body

recv_body_into(barray)
Receive the last chunk of the parsed body and store the data in a buffer rather than creating a new string.

should_keep_alive()
return True if the connection should be kept alive

exception circuits.web.parsers.http.InvalidChunkSize
Bases: exceptions.Exception

error raised when we parse an invalid chunk size

exception circuits.web.parsers.http.InvalidHeader
Bases: exceptions.Exception

error raised on invalid header

exception circuits.web.parsers.http.InvalidRequestLine
Bases: exceptions.Exception

error raised when first line is invalid

circuits.web.parsers.multipart module

Parser for multipart/form-data

This module provides a parser for the multipart/form-data format. It can read from a file, a socket or a WSGI envi-
ronment. The parser can be used to replace cgi.FieldStorage (without the bugs) and works with Python 2.5+ and 3.x
(2to3).

Licence (MIT)

Copyright (c) 2010, Marcel Hellkamp. Inspired by the Werkzeug library: http://werkzeug.pocoo.org/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

2.5. API Documentation 113

http://werkzeug.pocoo.org/

circuits Documentation, Release 3.2.2

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

class circuits.web.parsers.multipart.MultiDict(*a, **k)
Bases: _abcoll.MutableMapping

A dict that remembers old values for each key

append(key, value)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

getall(key)

iterallitems()

keys()→ list of D’s keys

replace(key, value)

exception circuits.web.parsers.multipart.MultipartError
Bases: exceptions.ValueError

class circuits.web.parsers.multipart.MultipartParser(stream, boundary,
content_length=-1,
disk_limit=1073741824,
mem_limit=1048576,
memfile_limit=262144,
buffer_size=65536,
charset=’latin1’)

Bases: object

Parse a multipart/form-data byte stream. This object is an iterator over the parts of the message.

Parameters

• stream – A file-like stream. Must implement .read(size).

• boundary – The multipart boundary as a byte string.

• content_length – The maximum number of bytes to read.

get(name, default=None)
Return the first part with that name or a default value (None).

get_all(name)
Return a list of parts with that name.

parts()
Returns a list with all parts of the multipart message.

class circuits.web.parsers.multipart.MultipartPart(buffer_size=65536,
memfile_limit=262144,
charset=’latin1’)

Bases: object

feed(line, nl=”)

finish_header()

is_buffered()
Return true if the data is fully buffered in memory.

save_as(path)

114 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

value
Data decoded with the specified charset

write_body(line, nl)

write_header(line, nl)

circuits.web.parsers.multipart.copy_file(stream, target, maxread=-1, buffer_size=32)
Read from :stream and write to :target until :maxread or EOF.

circuits.web.parsers.multipart.header_quote(val)

circuits.web.parsers.multipart.header_unquote(val, filename=False)

circuits.web.parsers.multipart.parse_form_data(environ, charset=’utf8’, strict=False,
**kw)

Parse form data from an environ dict and return a (forms, files) tuple. Both tuple values are dictionaries with
the form-field name as a key (text_type) and lists as values (multiple values per key are possible). The forms-
dictionary contains form-field values as text_type strings. The files-dictionary contains MultipartPart
instances, either because the form-field was a file-upload or the value is to big to fit into memory limits.

Parameters

• environ – An WSGI environment dict.

• charset – The charset to use if unsure. (default: utf8)

• strict – If True, raise MultipartError on any parsing errors. These are silently
ignored by default.

circuits.web.parsers.multipart.parse_options_header(header, options=None)

circuits.web.parsers.multipart.tob(data, enc=’utf8’)

circuits.web.parsers.querystring module

class circuits.web.parsers.querystring.QueryStringParser(data)
Bases: object

parse(key, value)

process(pair)

tokens(key)

class circuits.web.parsers.querystring.QueryStringToken
Bases: object

ARRAY = 'ARRAY'

KEY = 'KEY'

OBJECT = 'OBJECT'

Module contents

circuits.web parsers

2.5. API Documentation 115

circuits Documentation, Release 3.2.2

circuits.web.websockets package

Submodules

circuits.web.websockets.client module

class circuits.web.websockets.client.WebSocketClient(url, channel=’wsclient’,
wschannel=’ws’, head-
ers=None)

Bases: circuits.core.components.BaseComponent

An RFC 6455 compliant WebSocket client component. Upon receiving a circuits.web.client.
Connect event, the component tries to establish the connection to the server in a two stage process. First,
a circuits.net.events.connect event is sent to a child TCPClient. When the TCP connection has
been established, the HTTP request for opening the WebSocket is sent to the server. A failure in this setup
process is signaled by raising an NotConnected exception.

When the server accepts the request, the WebSocket connection is established and can be used very much like
an ordinary socket by handling read events on and sending write events to the channel specified as the
wschannel parameter of the constructor. Firing a close event on that channel closes the connection in an
orderly fashion (i.e. as specified by the WebSocket protocol).

Parameters

• url – the URL to connect to.

• channel – the channel used by this component

• wschannel – the channel used for the actual WebSocket communication (read, write,
close events)

• headers – additional headers to be passed with the WebSocket setup HTTP request

channel = 'wsclient'

close()

connected

circuits.web.websockets.dispatcher module

class circuits.web.websockets.dispatcher.WebSocketsDispatcher(path=None,
wschan-
nel=’wsserver’,
*args, **kwargs)

Bases: circuits.core.components.BaseComponent

This class implements an RFC 6455 compliant WebSockets dispatcher that handles the WebSockets handshake
and upgrades the connection.

The dispatcher listens on its channel for Request events and tries to match them with a given path. Upon
a match, the request is checked for the proper Opening Handshake information. If successful, the dispatcher
confirms the establishment of the connection to the client. Any subsequent data from the client is handled as a
WebSocket data frame, decoded and fired as a Read event on the wschannel passed to the constructor. The
data from write events on that channel is encoded as data frames and forwarded to the client.

Firing a Close event on the wschannel closes the connection in an orderly fashion (i.e. as specified by the
WebSocket protocol).

116 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

Parameters

• path – the path to handle. Requests that start with this path are considered to be WebSocket
Opening Handshakes.

• wschannel – the channel on which read events from the client will be delivered and
where write events to the client will be sent to.

channel = 'web'

select_subprotocol(subprotocols)

Module contents

circuits.web websockets

Submodules

circuits.web.client module

class circuits.web.client.Client(channel=’client’)
Bases: circuits.core.components.BaseComponent

channel = 'client'

close()

connect(event, host=None, port=None, secure=None)

connected

request(method, url, body=None, headers=None)

response

write(data)

exception circuits.web.client.HTTPException
Bases: exceptions.Exception

exception circuits.web.client.NotConnected
Bases: circuits.web.client.HTTPException

circuits.web.client.parse_url(url)

class circuits.web.client.request(method, path, body=None, headers=None)
Bases: circuits.core.events.Event

request Event

This Event is used to initiate a new request.

Parameters

• method (str) – HTTP Method (PUT, GET, POST, DELETE)

• url (str) – Request URL

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

2.5. API Documentation 117

circuits Documentation, Release 3.2.2

circuits.web.constants module

Global Constants

This module implements required shared global constants.

circuits.web.controllers module

Controllers

This module implements . . .

class circuits.web.controllers.BaseController(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = '/'

expires(secs=0, force=False)

forbidden(description=None)
Return a 403 (Forbidden) response

Parameters description (str) – Message to display

notfound(description=None)
Return a 404 (Not Found) response

Parameters description (str) – Message to display

redirect(urls, code=None)
Return a 30x (Redirect) response

Redirect to another location specified by urls with an optional custom response code.

Parameters

• urls (str or list) – A single URL or list of URLs

• code (int) – HTTP Redirect code

serve_download(path, name=None)

serve_file(path, type=None, disposition=None, name=None)

uri
Return the current Request URI

See also:

circuits.web.url.URL

class circuits.web.controllers.Controller(*args, **kwargs)
Bases: circuits.web.controllers.BaseController

initializes x; see x.__class__.__doc__ for signature

class circuits.web.controllers.ExposeJSONMetaClass(name, bases, dct)
Bases: type

class circuits.web.controllers.ExposeMetaClass(name, bases, dct)
Bases: type

118 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

class circuits.web.controllers.JSONController(*args, **kwargs)
Bases: circuits.web.controllers.BaseController

initializes x; see x.__class__.__doc__ for signature

circuits.web.controllers.expose(*channels, **config)

circuits.web.controllers.exposeJSON(*channels, **config)

circuits.web.errors module

Errors

This module implements a set of standard HTTP Errors.

class circuits.web.errors.forbidden(request, response, code=None, **kwargs)
Bases: circuits.web.errors.httperror

An event for signaling the HTTP Forbidden error

The constructor creates a new instance and modifies the response argument to reflect the error.

code = 403

class circuits.web.errors.httperror(request, response, code=None, **kwargs)
Bases: circuits.core.events.Event

An event for signaling an HTTP error

The constructor creates a new instance and modifies the response argument to reflect the error.

code = 500

description = ''

sanitize()

class circuits.web.errors.notfound(request, response, code=None, **kwargs)
Bases: circuits.web.errors.httperror

An event for signaling the HTTP Not Fouond error

The constructor creates a new instance and modifies the response argument to reflect the error.

code = 404

class circuits.web.errors.redirect(request, response, urls, code=None)
Bases: circuits.web.errors.httperror

An event for signaling the HTTP Redirect response

The constructor creates a new instance and modifies the response argument to reflect a redirect response to the
given url.

class circuits.web.errors.unauthorized(request, response, code=None, **kwargs)
Bases: circuits.web.errors.httperror

An event for signaling the HTTP Unauthorized error

The constructor creates a new instance and modifies the response argument to reflect the error.

code = 401

2.5. API Documentation 119

circuits Documentation, Release 3.2.2

circuits.web.events module

Events

This module implements the necessary Events needed.

class circuits.web.events.request(Event)→ request Event
Bases: circuits.core.events.Event

args: request, response

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

complete = True

failure = True

success = True

class circuits.web.events.response(Event)→ response Event
Bases: circuits.core.events.Event

args: request, response

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

120 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

complete = True

failure = True

success = True

class circuits.web.events.stream(Event)→ stream Event
Bases: circuits.core.events.Event

args: request, response

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

2.5. API Documentation 121

circuits Documentation, Release 3.2.2

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

complete = True

failure = True

success = True

class circuits.web.events.terminate(*args, **kwargs)
Bases: circuits.core.events.Event

terminate Event

An event is a message send to one or more channels. It is eventually dispatched to all components that have
handlers for one of the channels and the event type.

All normal arguments and keyword arguments passed to the constructor of an event are passed on to the handler.
When declaring a handler, its argument list must therefore match the arguments used for creating the event.

Every event has a name attribute that is used for matching the event with the handlers.

Variables

• channels – an optional attribute that may be set before firing the event. If defined (usually
as a class variable), the attribute specifies the channels that the event should be delivered to
as a tuple. This overrides the default behavior of sending the event to the firing component’s
channel.

When an event is fired, the value in this attribute is replaced for the instance with the chan-
nels that the event is actually sent to. This information may be used e.g. when the event is
passed as a parameter to a handler.

• value – this is a circuits.core.values.Value object that holds the results re-
turned by the handlers invoked for the event.

• success – if this optional attribute is set to True, an associated event success (original
name with “_success” appended) will automatically be fired when all handlers for the event
have been invoked successfully.

• success_channels – the success event is, by default, delivered to same channels as the
successfully dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

• complete – if this optional attribute is set to True, an associated event complete (orig-
inal name with “_complete” appended) will automatically be fired when all handlers for the
event and all events fired by these handlers (recursively) have been invoked successfully.

122 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• complete_channels – the complete event is, by default, delivered to same channels as
the initially dispatched event itself. This may be overridden by specifying an alternative list
of destinations using this attribute.

circuits.web.exceptions module

Exceptions

This module implements a set of standard HTTP Errors as Python Exceptions.

Note: This code is mostly borrowed from werkzeug and adapted for circuits.web

exception circuits.web.exceptions.Redirect(urls, status=None)
Bases: circuits.web.exceptions.HTTPException

code = 303

exception circuits.web.exceptions.RequestTimeout(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

408 Request Timeout

Raise to signalize a timeout.

code = 408

description = "<p>The server closed the network connection because the browser didn't finish the request within the specified time.</p>"

exception circuits.web.exceptions.RequestEntityTooLarge(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

413 Request Entity Too Large

The status code one should return if the data submitted exceeded a given limit.

code = 413

description = '<p>The data value transmitted exceeds the capacity limit.</p>'

exception circuits.web.exceptions.ServiceUnavailable(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

503 Service Unavailable

Status code you should return if a service is temporarily unavailable.

code = 503

description = '<p>The server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.</p>'

exception circuits.web.exceptions.UnsupportedMediaType(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

415 Unsupported Media Type

The status code returned if the server is unable to handle the media type the client transmitted.

code = 415

description = '<p>The server does not support the media type transmitted in the request.</p>'

2.5. API Documentation 123

circuits Documentation, Release 3.2.2

exception circuits.web.exceptions.RequestURITooLarge(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

414 Request URI Too Large

Like 413 but for too long URLs.

code = 414

description = '<p>The length of the requested URL exceeds the capacity limit for this server. The request cannot be processed.</p>'

exception circuits.web.exceptions.BadGateway(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

502 Bad Gateway

If you do proxying in your application you should return this status code if you received an invalid response
from the upstream server it accessed in attempting to fulfill the request.

code = 502

description = '<p>The proxy server received an invalid response from an upstream server.</p>'

exception circuits.web.exceptions.HTTPException(description=None, traceback=None)
Bases: exceptions.Exception

Baseclass for all HTTP exceptions. This exception can be called by WSGI applications to render a default error
page or you can catch the subclasses of it independently and render nicer error messages.

code = None

description = None

name
The status name.

traceback = True

exception circuits.web.exceptions.UnicodeError(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

raised by the request functions if they were unable to decode the incoming data properly.

exception circuits.web.exceptions.NotAcceptable(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

406 Not Acceptable

Raise if the server can’t return any content conforming to the Accept headers of the client.

code = 406

description = '<p>The resource identified by the request is only capable of generating response entities which have content characteristics not acceptable according to the accept headers sent in the request.</p>'

exception circuits.web.exceptions.BadRequest(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

400 Bad Request

Raise if the browser sends something to the application the application or server cannot handle.

code = 400

description = '<p>The browser (or proxy) sent a request that this server could not understand.</p>'

124 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

exception circuits.web.exceptions.RangeUnsatisfiable(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

416 Range Unsatisfiable

The status code returned if the server is unable to satisfy the request range

code = 416

description = '<p>The server cannot satisfy the request range(s).</p>'

exception circuits.web.exceptions.Unauthorized(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

401 Unauthorized

Raise if the user is not authorized. Also used if you want to use HTTP basic auth.

code = 401

description = "<p>The server could not verify that you are authorized to access the URL requested. You either supplied the wrong credentials (e.g. a bad password), or your browser doesn't understand how to supply the credentials required.</p><p>In case you are allowed to request the document, please check your user-id and password and try again.</p>"

exception circuits.web.exceptions.Gone(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

410 Gone

Raise if a resource existed previously and went away without new location.

code = 410

description = '<p>The requested URL is no longer available on this server and there is no forwarding address.</p><p>If you followed a link from a foreign page, please contact the author of this page.'

exception circuits.web.exceptions.PreconditionFailed(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

412 Precondition Failed

Status code used in combination with If-Match, If-None-Match, or If-Unmodified-Since.

code = 412

description = '<p>The precondition on the request for the URL failed positive evaluation.</p>'

exception circuits.web.exceptions.InternalServerError(description=None, trace-
back=None)

Bases: circuits.web.exceptions.HTTPException

500 Internal Server Error

Raise if an internal server error occurred. This is a good fallback if an unknown error occurred in the dispatcher.

code = 500

description = '<p>The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an error in the application.</p>'

exception circuits.web.exceptions.MethodNotAllowed(method, description=None)
Bases: circuits.web.exceptions.HTTPException

405 Method Not Allowed

Raise if the server used a method the resource does not handle. For example POST if the resource is view only.
Especially useful for REST.

The first argument for this exception should be a list of allowed methods. Strictly speaking the response would
be invalid if you don’t provide valid methods in the header which you can do with that list.

2.5. API Documentation 125

circuits Documentation, Release 3.2.2

code = 405

exception circuits.web.exceptions.NotFound(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

404 Not Found

Raise if a resource does not exist and never existed.

code = 404

description = '<p>The requested URL was not found on the server.</p><p>If you entered the URL manually please check your spelling and try again.</p>'

exception circuits.web.exceptions.LengthRequired(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

411 Length Required

Raise if the browser submitted data but no Content-Length header which is required for the kind of pro-
cessing the server does.

code = 411

description = '<p>A request with this method requires a valid <code>Content-Length</code> header.</p>'

exception circuits.web.exceptions.Forbidden(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

403 Forbidden

Raise if the user doesn’t have the permission for the requested resource but was authenticated.

code = 403

description = "<p>You don't have the permission to access the requested resource. It is either read-protected or not readable by the server.</p>"

exception circuits.web.exceptions.NotImplemented(description=None, traceback=None)
Bases: circuits.web.exceptions.HTTPException

501 Not Implemented

Raise if the application does not support the action requested by the browser.

code = 501

description = '<p>The server does not support the action requested by the browser.</p>'

circuits.web.headers module

Headers Support

This module implements support for parsing and handling headers.

class circuits.web.headers.AcceptElement(value, params=None)
Bases: circuits.web.headers.HeaderElement

An element (with parameters) from an Accept* header’s element list.

AcceptElement objects are comparable; the more-preferred object will be “less than” the less-preferred object.
They are also therefore sortable; if you sort a list of AcceptElement objects, they will be listed in priority order;
the most preferred value will be first. Yes, it should have been the other way around, but it’s too late to fix now.

classmethod from_str(elementstr)
Construct an instance from a string of the form ‘token;key=val’.

126 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

qvalue
The qvalue, or priority, of this value.

class circuits.web.headers.CaseInsensitiveDict(*args, **kwargs)
Bases: dict

A case-insensitive dict subclass.

Each key is changed on entry to str(key).title().

classmethod fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

class circuits.web.headers.HeaderElement(value, params=None)
Bases: object

An element (with parameters) from an HTTP header’s element list.

classmethod from_str(elementstr)
Construct an instance from a string of the form ‘token;key=val’.

static parse(elementstr)
Transform ‘token;key=val’ to (‘token’, {‘key’: ‘val’}).

class circuits.web.headers.Headers(*args, **kwargs)
Bases: circuits.web.headers.CaseInsensitiveDict

This class implements a storage for headers as key value pairs. The underlying model of a case insensitive dict
matches the requirements for headers quite well, because usually header keys are unique. If several values may
be associated with a header key, most HTTP headers represent the values as an enumeration using a comma as
item separator.

There is, however one exception (currently) to this rule. In order to set several cookies, there should be multiple
headers with the same key, each setting one cookie (“Set-Cookie: some_cookie”).

This is modeled by having either a string (common case) or a list (cookie case) as value in the underlying dict.
In order to allow easy iteration over all headers as they appear in the HTTP request, the items() method expands
associated lists of values. So if you have { “Set-Cookie”: [“cookie1”, “cookie2”] }, the items() method returns
the two pairs (“Set-Cookie”, “cookie1”) and (“Set-Cookie”, “cookie2”). This is convenient for most use cases.
The only drawback is that len(keys()) is not equal to len(items()) for this specialized dict.

add_header(_name, _value, **_params)
Extended header setting.

_name is the header field to add. keyword arguments can be used to set additional parameters for the
header field, with underscores converted to dashes. Normally the parameter will be added as key=”value”
unless value is None, in which case only the key will be added.

Example:

h.add_header(‘content-disposition’, ‘attachment’, filename=’bud.gif’)

2.5. API Documentation 127

circuits Documentation, Release 3.2.2

Note that unlike the corresponding ‘email.Message’ method, this does not handle ‘(charset, language,
value)’ tuples: all values must be strings or None.

append(key, value)
If a header with the given name already exists, the value is normally appended to the existing value sepa-
rated by a comma.

If, however, the already existing entry associated key with a value of type list (as is the case for “Set-
Cookie”), the new value is appended to that list.

elements(key)
Return a sorted list of HeaderElements for the given header.

get_all(name)
Return a list of all the values for the named field.

items()→ list of D’s (key, value) pairs, as 2-tuples

circuits.web.headers.header_elements(fieldname, fieldvalue)
Return a sorted HeaderElement list.

Returns a sorted HeaderElement list from a comma-separated header string.

circuits.web.http module

Hyper Text Transfer Protocol

This module implements the server side Hyper Text Transfer Protocol or commonly known as HTTP.

class circuits.web.http.HTTP(server, encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

HTTP Protocol Component

Implements the HTTP server protocol and parses and processes incoming HTTP messages, creating and sending
an appropriate response.

The component handles Read events on its channel and collects the associated data until a complete HTTP
request has been received. It parses the request’s content and puts it in a Request object and creates a corre-
sponding Response object. Then it emits a Request event with these objects as arguments.

The component defines several handlers that send a response back to the client.

base

channel = 'web'

protocol

scheme

uri

version

circuits.web.loggers module

Logger Component

This module implements Logger Components.

128 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

class circuits.web.loggers.Logger(file=None, logger=None, **kwargs)
Bases: circuits.core.components.BaseComponent

channel = 'web'

format = '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(f)s" "%(a)s"'

log(response)

log_response(response_event, value)

circuits.web.loggers.formattime()

circuits.web.main module

Main

circutis.web Web Server and Testing Tool.

class circuits.web.main.Authentication(channel=’web’, realm=None, passwd=None)
Bases: circuits.core.components.Component

channel = 'web'

realm = 'Secure Area'

request(event, request, response)

users = {'admin': '21232f297a57a5a743894a0e4a801fc3'}

class circuits.web.main.HelloWorld(*args, **kwargs)
Bases: circuits.core.components.Component

initializes x; see x.__class__.__doc__ for signature

channel = 'web'

request(request, response)

class circuits.web.main.Root(*args, **kwargs)
Bases: circuits.web.controllers.Controller

initializes x; see x.__class__.__doc__ for signature

hello(event, *args, **kwargs)

circuits.web.main.main()

circuits.web.main.parse_bind(bind)

circuits.web.main.parse_options()

circuits.web.main.select_poller(poller)

circuits.web.processors module

circuits.web.processors.process(request, params)

circuits.web.processors.process_multipart(request, params)

circuits.web.processors.process_urlencoded(request, params, encoding=’utf-8’)

2.5. API Documentation 129

circuits Documentation, Release 3.2.2

circuits.web.servers module

Web Servers

This module implements the several Web Server components.

class circuits.web.servers.BaseServer(bind, encoding=’utf-8’, secure=False, cert-
file=None, channel=’web’, display_banner=True,
bufsize=4096)

Bases: circuits.core.components.BaseComponent

Create a Base Web Server

Create a Base Web Server (HTTP) bound to the IP Address / Port or UNIX Socket specified by the ‘bind’
parameter.

Variables server – Reference to underlying Server Component

Parameters bind (Instance of int, list, tuple or str) – IP Address / Port or
UNIX Socket to bind to.

The ‘bind’ parameter is quite flexible with what valid values it accepts.

If an int is passed, a TCPServer will be created. The Server will be bound to the Port given by the ‘bind’
argument and the bound interface will default (normally to “0.0.0.0”).

If a list or tuple is passed, a TCPServer will be created. The Server will be bound to the Port given by the 2nd
item in the ‘bind’ argument and the bound interface will be the 1st item.

If a str is passed and it contains the ‘:’ character, this is assumed to be a request to bind to an IP Address / Port.
A TCpServer will thus be created and the IP Address and Port will be determined by splitting the string given
by the ‘bind’ argument.

Otherwise if a str is passed and it does not contain the ‘:’ character, a file path is assumed and a UNIXServer is
created and bound to the file given by the ‘bind’ argument.

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

channel = 'web'

display_banner

host

port

secure

class circuits.web.servers.FakeSock

getpeername()

class circuits.web.servers.Server(bind, **kwargs)
Bases: circuits.web.servers.BaseServer

Create a Web Server

Create a Web Server (HTTP) complete with the default Dispatcher to parse requests and posted form data
dispatching to appropriate Controller(s).

See: circuits.web.servers.BaseServer

x.__init__(. . .) initializes x; see x.__class__.__doc__ for signature

130 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

class circuits.web.servers.StdinServer(encoding=’utf-8’, channel=’web’)
Bases: circuits.core.components.BaseComponent

channel = 'web'

host

port

read(data)

secure

write(sock, data)

circuits.web.sessions module

Session Components

This module implements Session Components that can be used to store and access persistent information.

class circuits.web.sessions.MemoryStore
Bases: circuits.web.sessions.Store

data

delete(sid)
Delete the session data identified by sid

load(sid)
Load the session data identified by sid

save(sid, data)
Save the session data identified by sid

class circuits.web.sessions.Session(sid, data, store)
Bases: dict

expire()

sid

store

class circuits.web.sessions.Sessions(name=’circuits’, store=<class ’cir-
cuits.web.sessions.MemoryStore’>, channel=’web’)

Bases: circuits.core.components.Component

channel = 'web'

name

request(request, response)

store

class circuits.web.sessions.Store
Bases: object

delete(sid)
Delete the session data identified by sid

load(sid)
Load the session data identified by sid

2.5. API Documentation 131

circuits Documentation, Release 3.2.2

save(sid)
Save the session data identified by sid

circuits.web.sessions.create_session(request)
Create a unique session id from the request

Returns a unique session using uuid4() and a sha1() hash of the users IP Address and User Agent in the
form of sid/who.

circuits.web.sessions.verify_session(request, sid)
Verify a User’s Session

This verifies the User’s Session by verifying the SHA1 Hash of the User’s IP Address and User-Agent match
the provided Session ID.

circuits.web.sessions.who(request, encoding=’utf-8’)
Create a SHA1 Hash of the User’s IP Address and User-Agent

circuits.web.tools module

Tools

This module implements tools used throughout circuits.web. These tools can also be used within Controllers and
request handlers.

class circuits.web.tools.ReverseProxy(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

headers = ('X-Real-IP', 'X-Forwarded-For')

init(headers=None)
Web Component for identifying the original client IP when a reverse proxy is used

Parameters headers – List of HTTP headers to read the original client IP

circuits.web.tools.basic_auth(request, response, realm, users, encrypt=None)
Perform Basic Authentication

If auth fails, returns an Unauthorized error with a basic authentication header.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable
returning a dict.

• encrypt (callable) – Callable used to encrypt the password returned from the user-
agent. if None it defaults to a md5 encryption.

circuits.web.tools.check_auth(request, response, realm, users, encrypt=None)
Check Authentication

If an Authorization header contains credentials, return True, else False.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable
returning a dict.

132 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

• encrypt (callable) – Callable used to encrypt the password returned from the user-
agent. if None it defaults to a md5 encryption.

circuits.web.tools.digest_auth(request, response, realm, users)
Perform Digest Authentication

If auth fails, raise 401 with a digest authentication header.

Parameters

• realm (str) – The authentication realm.

• users (dict or callable) – A dict of the form: {username: password} or a callable
returning a dict.

circuits.web.tools.expires(request, response, secs=0, force=False)
Tool for influencing cache mechanisms using the ‘Expires’ header.

‘secs’ must be either an int or a datetime.timedelta, and indicates the number of seconds between response.time
and when the response should expire. The ‘Expires’ header will be set to (response.time + secs).

If ‘secs’ is zero, the ‘Expires’ header is set one year in the past, and the following “cache prevention” headers
are also set: - ‘Pragma’: ‘no-cache’ - ‘Cache-Control’: ‘no-cache, must-revalidate’

If ‘force’ is False (the default), the following headers are checked: ‘Etag’, ‘Last-Modified’, ‘Age’, ‘Expires’. If
any are already present, none of the above response headers are set.

circuits.web.tools.gzip(response, level=4, mime_types=(’text/html’, ’text/plain’))
Try to gzip the response body if Content-Type in mime_types.

response.headers[‘Content-Type’] must be set to one of the values in the mime_types arg before calling this
function.

No compression is performed if any of the following hold:

• The client sends no Accept-Encoding request header

• No ‘gzip’ or ‘x-gzip’ is present in the Accept-Encoding header

• No ‘gzip’ or ‘x-gzip’ with a qvalue > 0 is present

• The ‘identity’ value is given with a qvalue > 0.

circuits.web.tools.serve_download(request, response, path, name=None)
Serve ‘path’ as an application/x-download attachment.

circuits.web.tools.serve_file(request, response, path, type=None, disposition=None,
name=None)

Set status, headers, and body in order to serve the given file.

The Content-Type header will be set to the type arg, if provided. If not provided, the Content-Type will be
guessed by the file extension of the ‘path’ argument.

If disposition is not None, the Content-Disposition header will be set to “<disposition>; filename=<name>”. If
name is None, it will be set to the basename of path. If disposition is None, no Content-Disposition header will
be written.

circuits.web.tools.validate_etags(request, response, autotags=False)
Validate the current ETag against If-Match, If-None-Match headers.

If autotags is True, an ETag response-header value will be provided from an MD5 hash of the response body
(unless some other code has already provided an ETag header). If False (the default), the ETag will not be
automatic.

WARNING: the autotags feature is not designed for URL’s which allow methods other than GET. For example,
if a POST to the same URL returns no content, the automatic ETag will be incorrect, breaking a fundamental use

2.5. API Documentation 133

circuits Documentation, Release 3.2.2

for entity tags in a possibly destructive fashion. Likewise, if you raise 304 Not Modified, the response body will
be empty, the ETag hash will be incorrect, and your application will break. See http://www.w3.org/Protocols/
rfc2616/rfc2616-sec14.html#sec14.24

circuits.web.tools.validate_since(request, response)
Validate the current Last-Modified against If-Modified-Since headers.

If no code has set the Last-Modified response header, then no validation will be performed.

circuits.web.url module

This is a module for dealing with urls. In particular, sanitizing them.

class circuits.web.url.URL(scheme, host, port, path, params=”, query=”, fragment=”)
Bases: object

For more information on how and what we parse / sanitize: http://tools.ietf.org/html/rfc1808.html

The more up-to-date RFC is this one: http://www.ietf.org/rfc/rfc3986.txt

absolute()
Return True if this is a fully-qualified URL with a hostname and everything

abspath()
Clear out any ‘..’ and excessive slashes from the path

canonical()
Canonicalize this url. This includes reordering parameters and args to have a consistent ordering

defrag()
Remove the fragment from this url

deparam(params=None)
Strip any of the provided parameters out of the url

encode(encoding)
Return the url in an arbitrary encoding

equiv(other)
Return true if this url is equivalent to another

escape()
Make sure that the path is correctly escaped

lower()
Lowercase the hostname

classmethod parse(url, encoding)
Parse the provided url, and return a URL instance

punycode()
Convert to punycode hostname

relative(path, encoding=’utf-8’)
Evaluate the new path relative to the current url

sanitize()
A shortcut to abspath, escape and lowercase

unescape()
Unescape the path

134 Chapter 2. Documentation

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://tools.ietf.org/html/rfc1808.html
http://www.ietf.org/rfc/rfc3986.txt

circuits Documentation, Release 3.2.2

unicode()
Return a unicode version of this url

unpunycode()
Convert to an unpunycoded hostname

utf8()
Return a utf-8 version of this url

circuits.web.url.parse_url(url, encoding=’utf-8’)
Parse the provided url string and return an URL object

circuits.web.utils module

Utilities

This module implements utility functions.

circuits.web.utils.average(xs)

circuits.web.utils.compress(body, compress_level)
Compress ‘body’ at the given compress_level.

circuits.web.utils.dictform(form)

circuits.web.utils.get_ranges(headervalue, content_length)
Return a list of (start, stop) indices from a Range header, or None.

Each (start, stop) tuple will be composed of two ints, which are suitable for use in a slicing operation. That is,
the header “Range: bytes=3-6”, if applied against a Python string, is requesting resource[3:7]. This function
will return the list [(3, 7)].

If this function returns an empty list, you should return HTTP 416.

circuits.web.utils.is_unix_socket(path)

circuits.web.utils.parse_body(request, response, params)

circuits.web.utils.parse_qs(query_string)→ dict
Build a params dictionary from a query_string. If keep_blank_values is True (the default), keep values that are
blank.

circuits.web.utils.stddev(xs)

circuits.web.utils.variance(xs)

circuits.web.wrappers module

Request/Response Wrappers

This module implements the Request and Response objects.

class circuits.web.wrappers.Body
Bases: object

Response Body

encode_errors = 'strict'

class circuits.web.wrappers.HTTPStatus(status=200, reason=None)
Bases: object

2.5. API Documentation 135

circuits Documentation, Release 3.2.2

reason

status

class circuits.web.wrappers.Host(ip, port, name=None)
Bases: object

An internet address.

name should be the client’s host name. If not available (because no DNS lookup is performed), the IP address
should be used instead.

ip = '0.0.0.0'

name = 'unknown.tld'

port = 80

class circuits.web.wrappers.Request(sock, method=’GET’, scheme=’http’, path=’/’, proto-
col=(1, 1), qs=”, headers=None, server=None)

Bases: object

Creates a new Request object to hold information about a request.

Parameters

• sock (socket.socket) – The socket object of the request.

• method (str) – The requested method.

• scheme (str) – The requested scheme.

• path (str) – The requested path.

• protocol (str) – The requested protocol.

• qs (str) – The query string of the request.

initializes x; see x.__class__.__doc__ for signature

handled = False

host = ''

index = None

local = Host('127.0.0.1', 80, '127.0.0.1')

login = None

protocol = (1, 1)

remote = Host('', 0, '')

scheme = 'http'

script_name = ''

server = None

class circuits.web.wrappers.Response(sock, request)→ new Response object
Bases: object

A Response object that holds the response to send back to the client. This ensure that the correct data is sent in
the correct order.

initializes x; see x.__class__.__doc__ for signature

body
Response Body

136 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

chunked = False

close = False

done = False

prepare()

status
Response Status

stream = False

class circuits.web.wrappers.Status
Bases: object

Response Status

circuits.web.wrappers.file_generator(input, chunkSize=4096)

circuits.web.wrappers.formatdate(timeval=None, localtime=False)
Returns a date string as specified by RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted by gmtime() and localtime(), otherwise the
current time is used.

Optional localtime is a flag that when True, interprets timeval, and returns a date relative to the local timezone
instead of UTC, properly taking daylight savings time into account.

Optional argument usegmt means that the timezone is written out as an ascii string, not numeric one (so “GMT”
instead of “+0000”). This is needed for HTTP, and is only used when localtime==False.

circuits.web.wsgi module

WSGI Components

This module implements WSGI Components.

class circuits.web.wsgi.Application(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = 'web'

getRequestResponse(environ)

headerNames = {'CONTENT_LENGTH': 'Content-Length', 'CONTENT_TYPE': 'Content-Type', 'HTTP_CGI_AUTHORIZATION': 'Authorization', 'REMOTE_ADDR': 'Remote-Addr', 'REMOTE_HOST': 'Remote-Host'}

host

init()

on_response(event, response)

port

secure

translateHeaders(environ)

2.5. API Documentation 137

circuits Documentation, Release 3.2.2

class circuits.web.wsgi.Gateway(*args, **kwargs)
Bases: circuits.core.components.BaseComponent

initializes x; see x.__class__.__doc__ for signature

channel = 'web'

init(apps)

circuits.web.wsgi.create_environ(errors, path, req)

Module contents

Circuits Library - Web

circuits.web contains the circuits full stack web server that is HTTP and WSGI compliant.

Submodules

circuits.six module

Utilities for writing code that runs on Python 2 and 3

class circuits.six.Iterator
Bases: object

next()

class circuits.six.Module_six_moves_urllib
Bases: module

Create a six.moves.urllib namespace that resembles the Python 3 namespace

error = <module 'circuits.six.moves.urllib.error' (built-in)>

parse = <module 'circuits.six.moves.urllib_parse' (built-in)>

request = <module 'circuits.six.moves.urllib.request' (built-in)>

response = <module 'circuits.six.moves.urllib.response' (built-in)>

robotparser = <module 'circuits.six.moves.urllib.robotparser' (built-in)>

class circuits.six.Module_six_moves_urllib_error(name)
Bases: circuits.six._LazyModule

Lazy loading of moved objects in six.moves.urllib_error

ContentTooShortError

HTTPError

URLError

class circuits.six.Module_six_moves_urllib_parse(name)
Bases: circuits.six._LazyModule

Lazy loading of moved objects in six.moves.urllib_parse

ParseResult

SplitResult

parse_qs

138 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

parse_qsl

quote

quote_plus

splitquery

splittag

splituser

splitvalue

unquote

unquote_plus

urldefrag

urlencode

urljoin

urlparse

urlsplit

urlunparse

urlunsplit

uses_fragment

uses_netloc

uses_params

uses_query

uses_relative

class circuits.six.Module_six_moves_urllib_request(name)
Bases: circuits.six._LazyModule

Lazy loading of moved objects in six.moves.urllib_request

AbstractBasicAuthHandler

AbstractDigestAuthHandler

BaseHandler

CacheFTPHandler

FTPHandler

FancyURLopener

FileHandler

HTTPBasicAuthHandler

HTTPCookieProcessor

HTTPDefaultErrorHandler

HTTPDigestAuthHandler

HTTPErrorProcessor

2.5. API Documentation 139

circuits Documentation, Release 3.2.2

HTTPHandler

HTTPPasswordMgr

HTTPPasswordMgrWithDefaultRealm

HTTPRedirectHandler

HTTPSHandler

OpenerDirector

ProxyBasicAuthHandler

ProxyDigestAuthHandler

ProxyHandler

Request

URLopener

UnknownHandler

build_opener

getproxies

install_opener

pathname2url

proxy_bypass

url2pathname

urlcleanup

urlopen

urlretrieve

class circuits.six.Module_six_moves_urllib_response(name)
Bases: circuits.six._LazyModule

Lazy loading of moved objects in six.moves.urllib_response

addbase

addclosehook

addinfo

addinfourl

class circuits.six.Module_six_moves_urllib_robotparser(name)
Bases: circuits.six._LazyModule

Lazy loading of moved objects in six.moves.urllib_robotparser

RobotFileParser

class circuits.six.MovedAttribute(name, old_mod, new_mod, old_attr=None,
new_attr=None)

Bases: circuits.six._LazyDescr

class circuits.six.MovedModule(name, old, new=None)
Bases: circuits.six._LazyDescr

140 Chapter 2. Documentation

circuits Documentation, Release 3.2.2

circuits.six.add_metaclass(metaclass)
Class decorator for creating a class with a metaclass.

circuits.six.add_move(move)
Add an item to six.moves.

circuits.six.assertCountEqual(self, *args, **kwargs)

circuits.six.assertRaisesRegex(self, *args, **kwargs)

circuits.six.assertRegex(self, *args, **kwargs)

circuits.six.b(s)
Byte literal

circuits.six.byte2int(bs)

circuits.six.create_bound_method(func, obj)

circuits.six.create_unbound_method(func, cls)

circuits.six.exec_(_code_, _globs_=None, _locs_=None)
Execute code in a namespace.

circuits.six.get_unbound_function(unbound)
Get the function out of a possibly unbound function

circuits.six.indexbytes(buf, i)

circuits.six.iteritems(d, **kw)
Return an iterator over the (key, value) pairs of a dictionary.

circuits.six.iterkeys(d, **kw)
Return an iterator over the keys of a dictionary.

circuits.six.iterlists(d, **kw)
Return an iterator over the (key, [values]) pairs of a dictionary.

circuits.six.itervalues(d, **kw)
Return an iterator over the values of a dictionary.

circuits.six.print_(*args, **kwargs)

circuits.six.python_2_unicode_compatible(klass)
A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3 it does nothing.

To support Python 2 and 3 with a single code base, define a __str__ method returning text and apply this
decorator to the class.

circuits.six.raise_from(value, from_value)

circuits.six.remove_move(name)
Remove item from six.moves.

circuits.six.reraise(tp, value, tb=None)
Reraise an exception.

circuits.six.u(s)
Text literal

circuits.six.with_metaclass(meta, *bases)
Create a base class with a metaclass.

circuits.six.wraps(wrapped, assigned=(’__module__’, ’__name__’, ’__doc__’), up-
dated=(’__dict__’,))

2.5. API Documentation 141

circuits Documentation, Release 3.2.2

circuits.version module

Module contents

Lightweight Event driven and Asynchronous Application Framework

circuits is a Lightweight Event driven and Asynchronous Application Framework for the Python Programming
Language with a strong Component Architecture.

copyright CopyRight (C) 2004-2016 by James Mills

license MIT (See: LICENSE)

2.6 Developer Docs

So, you’d like to contribute to circuits in some way? Got a bug report? Having problems running the examples?
Having problems getting circuits working in your environment?

Excellent. Here’s what you need to know.

2.6.1 Development Introduction

Here’s how we do things in circuits. . .

Communication

• IRC Channel on the Libera.Chat IRC Network

• Developer Mailing List

• Issue Tracker

Note: If you are familiar with IRC and use your own IRC Client then connect to the Libera.Chat Network and /join
#circuits.

Standards

We use the following coding standard:

• PEP-008

We also lint our codebase with the following tools:

• pyflakes

• pep8

• mccabe

Please ensure your Development IDE or Editor has the above linters and checkers in place and enabled.

Alternatively you can use the following command line tool:

• flake8

142 Chapter 2. Documentation

http://www.python.org/
http://www.python.org/
https://web.libera.chat/#circuits
https://libera.chat
http://groups.google.com/group/circuits-dev
https://github.com/circuits/circuits/issues
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/pyflakes
https://pypi.python.org/pypi/pep8
https://pypi.python.org/pypi/mccabe/0.2.1
https://pypi.python.org/pypi/flake8

circuits Documentation, Release 3.2.2

Tools

We use the following tools to develop circuits and share code:

• Code Sharing: Git

• Code Hosting and Bug Reporting: GitHub

• Issue Tracker: Issue Tracker

• Documentation Hosting: Read the Docs

• Package Hosting: Python Package Index (PyPi)

• Continuous Integration: Github Actions

2.6.2 Contributing to circuits

Here’s how you can contribute to circuits

Share your story

One of the best ways you can contribute to circuits is by using circuits. Share with us your story of how you’ve used
circuits to solve a problem or create a new software solution using the circuits framework and library of components.

Submitting Bug Reports

We welcome all bug reports. We do however prefer bug reports in a clear and concise form with repeatable steps. One
of the best ways you can report a bug to us is by writing a unit test (//similar to the ones in our tests//) so that we can
verify the bug, fix it and commit the fix along with the test.

To submit a bug report, please Create an Issue

Writing new tests

We’re not perfect, and we’re still writing more tests to ensure quality code. If you’d like to help, please Fork circuits,
write more tests that cover more of our code base and submit a Pull Request. Many Thanks!

Adding New Features

If you’d like to see a new feature added to circuits, then we’d like to hear about it~ We would like to see some
discussion around any new features as well as valid use-cases. To start the discussions off, please either:

• Chat to us on #circuits on the Libera.Chat IRC Network

or

• Create an Issue

2.6. Developer Docs 143

https://git-scm.com/
https://github.com/circuits/circuits
https://github.com/circuits/circuits/issues
http://circuits.readthedocs.org
http://pypi.python.org/pypi/circuits
https://github.com/circuits/circuits/actions
https://github.com/circuits/circuits/issues/new
https://github.com/circuits/circuits/issues/new#fork-destination-box
https://github.com/circuits/circuits/compare/
https://libera.chat
https://github.com/circuits/circuits/issues/new

circuits Documentation, Release 3.2.2

2.6.3 Setting up a circuits Development Environment

This is the recommended way to setup a development enviornment for developing with or on circuits.

Note: This document assumes you already have a working Python environment with a minimum Python version of
2.7 as well as pip already installed.

Prequisites

It is highly recommended that you install and use virtualenv for all your Python development and production deploy-
ments (not just circuits).

It is also convenient to install and use the accompanying shell scripts and tools virtualenvwrapper which adds a nice
set of workflows and functions useful for both development and deployments.

$ pip install -U virtualenvwrapper
$ source $(which virtualenvwrapper.sh)

Note: You should put source $(which virtualenvwrapper.sh) in either your $HOME/.bashrc or
$HOME/.profile depending on how you login and interact with your terminals.

In addition to the above recommendations you must also have a Git client installed and ready to use as well as your
Editor/IDE of choice ready to use.

Getting Started

1. Fork circuits (if you haven’t done so already)

2. Clone your forked repository using Git

3. Create a new virtual environment using virtualenvwrapper

4. Install the Development Requirements

5. Install circuits in “develop” mode

And you’re done!

Example:

$ git clone git@github.com:prologic/circuits.git
$ cd circuits
$ mkvirtualenv circuits
$ pip install -r requirements-dev.txt
$ python setup.py develop

Alternatively if you already have Fabric installed:

$ git clone git@github.com:prologic/circuits.git
$ cd circuits
$ mkvirtualenv circuits
$ fab develop

144 Chapter 2. Documentation

https://www.python.org/
https://www.python.org/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/virtualenv
https://www.python.org/
https://pypi.python.org/pypi/virtualenvwrapper
https://git-scm.com/
https://github.com/circuits/circuits#fork-destination-box
https://git-scm.com/
https://pypi.python.org/pypi/virtualenvwrapper
https://github.com/circuits/circuits/blob/master/requirements-dev.txt
http://www.fabfile.org/

circuits Documentation, Release 3.2.2

2.6.4 Development Processes

We document all our internal development processes here so you know exactly how we work and what to expect. If
you find any issues or problems please let us know!

Software Development Life Cycle (SDLC)

We employ the use of the SCRUM Agile Process and use our Issue Tracker to track features, bugs, chores and releases.
If you wish to contribute to circuits, please familiarize yourself with SCRUM and GitHub’s Issue Tracker.

Bug Reports

• New Bug Reports are submitted via: https://github.com/circuits/circuits/issues

• Confirmation and Discussion of all New Bug Reports.

• Once confirmed, a new Bug is raised in our Issue Tracker

• An appropriate milestone will be set (depending on current milestone’s schedule and resources)

• A unit test developed that demonstrates the bug’s failure.

• A fix developed that passes the unit test and breaks no others.

• A New Pull Request created with the fix.

This must contains: - A new or modified unit test. - A patch that fixes the bug ensuring all unit tests pass. - The
Change Log updated. - Appropriate documentation updated.

• The Pull Request is reviewed and approved by at least two other developers.

Feature Requests

• New Feature Requests are submitted via: https://github.com/circuits/circuits/issues

• Confirmation and Discussion of all New Feature Requests.

• Once confirmed, a new Feature is raised in our Issue Tracker

• An appropriate milestone will be set (depending on current milestone’s schedule and resources)

• A unit test developed that demonstrates the new feature.

• The new feature developed that passes the unit test and breaks no others.

• A New Pull Request created with the fix.

This must contains: - A new or modified unit test. - A patch that implements the new feature ensuring all unit
tests pass. - The Change Log updated. - Appropriate documentation updated.

• The Pull Request is reviewed and approved by at least two other developers.

Writing new Code

• Submit a New Issue

• Write your code.

• Use flake8 to ensure code quality.

• Run the tests:

2.6. Developer Docs 145

http://en.wikipedia.org/wiki/Scrum_(development)
https://github.com/circuits/circuits/issues
https://github.com
https://github.com/circuits/circuits/issues
https://github.com/circuits/circuits/issues
https://github.com/circuits/circuits/compare/
https://github.com/circuits/circuits/tree/master/CHANGES.rst
https://github.com/circuits/circuits/pulls
https://github.com/circuits/circuits/issues
https://github.com/circuits/circuits/issues
https://github.com/circuits/circuits/compare/
https://github.com/circuits/circuits/tree/master/CHANGES.rst
https://github.com/circuits/circuits/pulls
https://github.com/circuits/circuits/issues/new
http://pypi.python.org/pypi/flake8

circuits Documentation, Release 3.2.2

$ tox

• Ensure any new or modified code does not break existing unit tests.

• Update any relevant doc strings or documentation.

• Update the Change Log updated.

• Submit a New Pull Request.

Running the Tests

To run the tests you will need the following installed:

• tox installed as well as

• pytest-cov

• pytest

All of these can be installed via pip.

Please also ensure that you you have all supported versions of Python that circuits supports installed in your local
environment.

To run the tests:

$ tox

2.6.5 Development Standards

We use the following development standards:

Cyclomatic Complexity

• Code Complexity shall not exceed 10

See: Limiting Cyclomatic Complexity

Coding Style

• Code shall confirm to the PEP8 Style Guide.

Note: This includes the 79 character limit!

• Doc Strings shall confirm to the PEP257 Convention.

Note: Arguments, Keyword Arguments, Return and Exceptions must be documented with the appropriate
Sphinx‘Python Domain <http://sphinx-doc.org/latest/domains.html#the-python-domain>‘_.

146 Chapter 2. Documentation

https://github.com/circuits/circuits/tree/master/CHANGES.rst
https://github.com/circuits/circuits/compare/
http://codespeak.net/tox/
http://pypi.python.org/pypi/pytest-cov
http://pytest.org/latest/
http://en.wikipedia.org/wiki/Cyclomatic_complexity#Limiting_complexity_during_development
http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0257/
http://sphinx-doc.org/latest/domains.html#the-python-domain

circuits Documentation, Release 3.2.2

Revision History

• Commits shall be small tangible pieces of work. - Each commit must be concise and manageable. - Large
changes are to be done over smaller commits.

• There shall be no commit squashing.

• Rebase your changes as often as you can.

Unit Tests

• Every new feature and bug fix must be accompanied with a unit test. (The only exception to this are minor trivial
changes).

2.7 Change Log

• #96: circuits.tools.graph() has been split into smaller functions (for creating dot, ascii, png separately)

• #132: The initial request containing the session has been added to the websocket dispatcher events in cir-
cuits.web.websockets

• #298: Added support for Python 3.10

• #165: Fix Host HTTP header parsing when circuits.web.Server is bound to a UNIX Socket

• #123: Fixes bug in the complete event

• #173: Fix the type difference between _current_thread and _flushing_thread

• #170: Fix crash from deleting undefined variables

• #184: Fix websocket data parsing if content is larger than BUFSIZE

• #185: Fix Denial of Service socket/memory leak for not connected clients

• #187: Fix parsing and decoding of application/x-www-urlencoded payloads

• #54: Fix a memory leak due to on_done handlers

• #202: Removed the (unused) internal cache from EventType.

• #198: Made pushing onto the event queue via fire threadsafe.

• #235: the prefix in the Debugger might be a callable now

• #241: Adjust circuits.tools.graph() to API change in networkx

• #254: Fix CRLF injection in IRC protocol

• #257: Fix WSGI component for Python 2.7 and Python 3

• #264: Improoved robustness of IRC messages

• #266: Fix python2 str(circuits.core.values.Value())

• #269: Fix error handling when TLS handshake fails

• #263: Improove error handling during TLS handshake

• #270: fix TLS support for websockets (unhandled SSLWantReadError)

• #176: Generator expressions don’t raise StopIteration anymore

• #238: Reverted changes fixed by upstream http-parser library

2.7. Change Log 147

https://github.com/circuits/circuits/issues/96
https://github.com/circuits/circuits/issues/132
https://github.com/circuits/circuits/issues/298
https://github.com/circuits/circuits/issues/165
https://github.com/circuits/circuits/issues/123
https://github.com/circuits/circuits/issues/173
https://github.com/circuits/circuits/issues/170
https://github.com/circuits/circuits/issues/184
https://github.com/circuits/circuits/issues/185
https://github.com/circuits/circuits/issues/187
https://github.com/circuits/circuits/issues/54
https://github.com/circuits/circuits/issues/202
https://github.com/circuits/circuits/issues/198
https://github.com/circuits/circuits/issues/235
https://github.com/circuits/circuits/issues/241
https://github.com/circuits/circuits/issues/254
https://github.com/circuits/circuits/issues/257
https://github.com/circuits/circuits/issues/264
https://github.com/circuits/circuits/issues/266
https://github.com/circuits/circuits/issues/269
https://github.com/circuits/circuits/issues/263
https://github.com/circuits/circuits/issues/270
https://github.com/circuits/circuits/issues/176
https://github.com/circuits/circuits/issues/238

circuits Documentation, Release 3.2.2

• : :security:‘251‘ A HTTP header injection vulnerability in circuits.web.websockets.client has been fixed

• : :security:‘293‘ HTML escaping of error responses, 3XX redirects and Powered-by texts has been fixed

• : - typos in docstrings/comments have been fixed

• #252: circuits.io.serial: missing encoding parameter has been added

• #253: circuits.io.serial: add readline argument to only fire read events for full lines

• #285: requests with chunked transfer encoding are not dispatched if the message body is not yet received
completely

• #285: circuits.web.parsers.http has been upgraded to latest upstream http-parser version

• #238: Reverted changes fixed by upstream http-parser library

• : Fixed Python 3 compatibility for circuits.web.tools.validate_etag() with MD5 hashes

• #292: HTTP Connection header values are now correctly evaluated case insensitive in web.client components

• #291: HTTP Connection header values are now correctly evaluated case insensitive in websocket components

• : :security:‘289‘ potential XSS attacks via crafted files in directory listing is now prevented via HTML escaping
in the circuits.web.dispatchers.static component.

• : :security:‘251‘ A HTTP header injection vulnerability in circuits.web.websockets.client has been fixed

• : :security:‘293‘ HTML escaping of error responses, 3XX redirects and Powered-by texts has been fixed

• : - typos in docstrings/comments have been fixed

• #307: Various format string syntaxes have been relaxed so that they don’t cause exceptions on non string input

• #261: A workaroung for websocket clients has been added, which prevents that the first websocket is not lost

• #197: Exceptions during socket.accept() are now re-raised in the main thread

• #197: Exceptions during initialization of Poller‘s is now handlded via an ‘error Event

• #168: Add interface for selecting the websocket subprotocol

• #202: Removed EventType metaclass

• : Add support to set additional socket options

• #214: Implement STARTTLS for sockets as event

• #224: Add new HTTP status code 308 moved permanently (RFC 7538)

• #212: Improves the API for session management and adds expire support

• #233: circuits.core.values.Value is now __str__ compatible with Python 2

• #231: Add support for STOMP protocol

• #240: Added auto_add to circuits.io.notify

• #249: Add irc.utils.irc_color_to_ansi()

• #245: IRC: enhance stripping of colors

• #273: Added a bufsize argument to the __init__ of BaseServer

• : The exception handling has been improoved

• #152: Dropped the support for Python 2.6 and 3.x < 3.4

• : Added support for Python 3.6, 3.7, 3.8, 3.9-dev

148 Chapter 2. Documentation

https://github.com/circuits/circuits/issues/252
https://github.com/circuits/circuits/issues/253
https://github.com/circuits/circuits/issues/285
https://github.com/circuits/circuits/issues/285
https://github.com/circuits/circuits/issues/238
https://github.com/circuits/circuits/issues/292
https://github.com/circuits/circuits/issues/291
https://github.com/circuits/circuits/issues/307
https://github.com/circuits/circuits/issues/261
https://github.com/circuits/circuits/issues/197
https://github.com/circuits/circuits/issues/197
https://github.com/circuits/circuits/issues/168
https://github.com/circuits/circuits/issues/202
https://github.com/circuits/circuits/issues/214
https://github.com/circuits/circuits/issues/224
https://tools.ietf.org/html/rfc7538.html
https://github.com/circuits/circuits/issues/212
https://github.com/circuits/circuits/issues/233
https://github.com/circuits/circuits/issues/231
https://github.com/circuits/circuits/issues/240
https://github.com/circuits/circuits/issues/249
https://github.com/circuits/circuits/issues/245
https://github.com/circuits/circuits/issues/273
https://github.com/circuits/circuits/issues/152

circuits Documentation, Release 3.2.2

• #119: Fixed bug in circuits.web.url.parse_url() that caused a display issue with port bindings on
ports 80 and 443.

• #115: Fixed FallbackErrorHandler API Change

• #113: Fixed bug with forced shutdown of subprocesses in Windows.

• : Bridge: Send exceptions via brige before change the exceptions weren’t propagated via bridge because trace-
back object is not pickable, now traceback object is replaced by corresponding traceback list

• : Bridge: Do not propagate no results via bridge

• : Fixed issue in brige with ommiting all but the first events sent at once

• : Fixed exception handing in circuits.web

• : Fixed import of FallBackExceptionHandler

• : Node: Add node examples.

• : Node: fixes event response flood.

• : Node: fixes the event value issue.

• : Node: add event firewall (client / server).

• : Node: add peer node: return channel name.

• : Fixes optional parameters handling (client / server).

• : Rename the FallbackErrorHandler to FallbackExceptionHandler and the event it listens to to exception

• : Bridge waits for event processing on the other side before proxy handler ends. Now it is possible to collect
values from remote handlers in %_success event.

• #96: Link to ChangeLog from README

• #117: Fixed inconsistent top-level examples.

• #94: Modified the circuits.web.Logger to use the response_success event.

• #98: Dockerized circuits. See: https://docker.io/

• #99: Added Digest Auth support to the circuits.web CLI Tool

• #103: Added the firing of a disconnect event for the WebSocketsDispatcher.

• #108: Improved server support for the IRC Protocol.

• #112: Improved Signal Handling

• #37: Fixed a typo in File

• #38: Guard against invalid headers. (circuits.web)

• #46: Set Content-Type header on response for errors. (circuits.web)

• #48: Allow event to be passed to the decorated function (the request handler) for circuits.web

• #45: Fixed use of cmp() and __cmp__() for Python 3 compatibility.

• #56: circuits.web HEAD request send response body web

• #62: Fix packaging and bump circuits 1.5.1 for @dsuch (Dariusz Suchojad) for Zato

• #53: WebSocketClient treating WebSocket data in same TCP segment as HTTP response as part the HTTP
response. web

• #67: web example jsontool is broken on python3 web

2.7. Change Log 149

https://github.com/circuits/circuits/issues/119
https://github.com/circuits/circuits/issues/115
https://github.com/circuits/circuits/issues/113
https://github.com/circuits/circuits/issues/96
https://github.com/circuits/circuits/issues/117
https://github.com/circuits/circuits/issues/94
https://github.com/circuits/circuits/issues/98
https://docker.io/
https://github.com/circuits/circuits/issues/99
https://github.com/circuits/circuits/issues/103
https://github.com/circuits/circuits/issues/108
https://github.com/circuits/circuits/issues/112
https://github.com/circuits/circuits/issues/37
https://github.com/circuits/circuits/issues/38
https://github.com/circuits/circuits/issues/46
https://github.com/circuits/circuits/issues/48
https://github.com/circuits/circuits/issues/45
https://github.com/circuits/circuits/issues/56
https://github.com/circuits/circuits/issues/62
https://zato.io/
https://github.com/circuits/circuits/issues/53
https://github.com/circuits/circuits/issues/67

circuits Documentation, Release 3.2.2

• #77: Uncaught exceptions Event collides with sockets and others core

• #81: “index” method not serving / web

• #76: Missing unit test for DNS lookup failures net

• #66: web examples jsonserializer broken web

• #59: circuits.web DoS in serve_file (remote denial of service) web

• #91: Call/Wait and specific instances of events

• #89: Class attribtues that reference methods cause duplicate event handlers core

• #47: Dispatcher does not fully respect optional arguments. web

• #97: Fixed tests.net.test_tcp.test_lookup_failure test for Windows

• #100: Fixed returned Content-Type in JSON-RPC Dispatcher.

• #102: Fixed minor bug with WebSocketsDispatcher causing superflusous connect() events from being fired.

• #104: Prevent other websockets sessions from closing.

• #106: Added __format__ method to circuits.web.wrappers.HTTPStatus.

• #107: Added __le__ and __ge__ methods to circuits.web.wrappers.HTTPStatus

• #109: Fixed Event.create() factory and metaclass.

• #111: Fixed broken Digest Auth Test for circuits.web

• #63: typos in documentation docs

• #60: meantion @handler decorator in tutorial docs

• #65: Update tutorial to match circuits 3.0 API(s) and Semantics docs

• #69: Merge #circuits-dev FreeNode Channel into #circuits

• #75: Document and show examples of using circuits.tools docs

• #70: Convention around method names of event handlers

• #72: Update Event Filtering section of Users Manual docs

• #73: Fix duplication in auto generated API Docs. docs

• #78: Migrate Change Log maintenance and build to Releases

• #71: Document the value_changed event docs

• #92: Update circuitsframework.com content docs

• #88: Document the implicit registration of components attached as class attributes docs

• #87: A rendered example of circuits.tools.graph(). docs

• #85: Migrate away from ShiningPanda

• #61: circuits.web documentation enhancements docs

• #86: Telnet Tutorial

• #95: Updated Developer Documentation with corrections and a new workflow.

150 Chapter 2. Documentation

https://github.com/circuits/circuits/issues/77
https://github.com/circuits/circuits/issues/81
https://github.com/circuits/circuits/issues/76
https://github.com/circuits/circuits/issues/66
https://github.com/circuits/circuits/issues/59
https://github.com/circuits/circuits/issues/91
https://github.com/circuits/circuits/issues/89
https://github.com/circuits/circuits/issues/47
https://github.com/circuits/circuits/issues/97
https://github.com/circuits/circuits/issues/100
https://github.com/circuits/circuits/issues/102
https://github.com/circuits/circuits/issues/104
https://github.com/circuits/circuits/issues/106
https://github.com/circuits/circuits/issues/107
https://github.com/circuits/circuits/issues/109
https://github.com/circuits/circuits/issues/111
https://github.com/circuits/circuits/issues/63
https://github.com/circuits/circuits/issues/60
https://github.com/circuits/circuits/issues/65
https://github.com/circuits/circuits/issues/69
https://github.com/circuits/circuits/issues/75
https://github.com/circuits/circuits/issues/70
https://github.com/circuits/circuits/issues/72
https://github.com/circuits/circuits/issues/73
https://github.com/circuits/circuits/issues/78
https://github.com/circuits/circuits/issues/71
https://github.com/circuits/circuits/issues/92
https://github.com/circuits/circuits/issues/88
https://github.com/circuits/circuits/issues/87
https://github.com/circuits/circuits/issues/85
https://github.com/circuits/circuits/issues/61
https://github.com/circuits/circuits/issues/86
https://github.com/circuits/circuits/issues/95

circuits Documentation, Release 3.2.2

2.7.1 Older Change Logs

For older Change Logs of previous versions of circuits please see the respective PyPi page(s):

• circuits-2.1.0

• circuits-2.0.1

• circuits-2.0.0

• circuits-1.6

• circuits-1.5

2.8 Road Map

We managed our Roadmap on our [Github Project](https://github.com/circuits/circuits)

2.9 Contributors

circuits was originally designed, written and primarily maintained by James Mills (http://prologic.shortcircuit.net.au/).

The following users and developers have contributed to circuits:

• Alessio Deiana

• Dariusz Suchojad

• Tim Miller

• Holger Krekel

• Justin Giorgi

• Edwin Marshall

• Alex Mayfield

• Toni Alatalo

• Michael Lipp

• Matthieu Chevrier

• Yoann Ono Dit Biot

Anyone not listed here (apologies as this list is taken directly from Mercurial’s churn command and output). We
appreciate any and all contributions to circuits.

2.10 Frequently Asked Questions

2.10.1 General

. . . What is circuits? circuits is an event-driven framework with a high focus on Component architectures making
your life as a software developer much easier. circuits allows you to write maintainable and scalable systems
easily

2.8. Road Map 151

http://pypi.python.org/pypi
http://pypi.python.org/pypi/circuits/2.1.0
http://pypi.python.org/pypi/circuits/2.0.1
http://pypi.python.org/pypi/circuits/2.0.0
http://pypi.python.org/pypi/circuits/1.6
http://pypi.python.org/pypi/circuits/1.5
https://github.com/circuits/circuits
http://prologic.shortcircuit.net.au/

circuits Documentation, Release 3.2.2

. . . Can I write networking applications with circuits? Yes absolutely. circuits comes with socket I/O components
for tcp, udp and unix sockets with asynchronous polling implementations for select, poll, epoll and kqueue.

. . . Can I integrate circuits with a GUI library? This is entirely possible. You will have to hook into the GUI’s
main loop.

. . . What are the core concepts in circuits? Components and Events. Components are maintainable reusable units
of behavior that communicate with other components via a powerful message passing system.

. . . How would you compare circuits to Twisted? Others have said that circuits is very elegant in terms of it’s usage.
circuits’ component architecture allows you to define clear interfaces between components while maintaining a
high level of scalability and maintainability.

. . . Can Components communicate with other processes? Yes. circuits implements currently component bridging
and nodes

. . . What platforms does circuits support? circuits currently supports Linux, FreeBSD, OSX and Windows and is
currently continually tested against Linux against Python versions 2.7, 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10. Windows
support is best efford.

. . . Can circuits be used for concurrent or distributed programming? Yes. We also have plans to build more dis-
tributed components into circuits making distributing computing with circuits very trivial.

Got more questions?

• Send an email to our Mailing List.

• Talk to us online on the #circuits IRC Channel

2.11 Glossary

VCS Version Control System, what you use for versioning your source code

2.12 Hello

Download Source Code: hello.py:

2.13 Echo Server

Download Source Code: echoserver.py:

2.14 Hello Web

Download Source Code: helloweb.py:

More examples. . .

152 Chapter 2. Documentation

http://groups.google.com/group/circuits-users
https://web.libera.chat/#circuits
https://github.com/circuits/circuits/tree/master/examples/

CHAPTER 3

Indices and tables

• Index

• modindex

• search

• Glossary

153

circuits Documentation, Release 3.2.2

154 Chapter 3. Indices and tables

Python Module Index

c
circuits, 142
circuits.app, 58
circuits.app.daemon, 55
circuits.core, 72
circuits.core.bridge, 59
circuits.core.components, 59
circuits.core.debugger, 61
circuits.core.events, 61
circuits.core.handlers, 65
circuits.core.helpers, 65
circuits.core.loader, 66
circuits.core.manager, 66
circuits.core.pollers, 69
circuits.core.timers, 70
circuits.core.utils, 71
circuits.core.values, 71
circuits.core.workers, 72
circuits.io, 93
circuits.io.events, 79
circuits.io.file, 92
circuits.io.process, 92
circuits.io.serial, 93
circuits.net, 100
circuits.net.events, 93
circuits.net.sockets, 97
circuits.node, 104
circuits.node.client, 100
circuits.node.events, 101
circuits.node.node, 101
circuits.node.server, 103
circuits.node.utils, 104
circuits.protocols, 108
circuits.protocols.http, 104
circuits.protocols.irc, 106
circuits.protocols.line, 106
circuits.protocols.websocket, 107
circuits.six, 138
circuits.tools, 108

circuits.version, 142
circuits.web, 138
circuits.web.client, 117
circuits.web.constants, 118
circuits.web.controllers, 118
circuits.web.dispatchers, 112
circuits.web.dispatchers.dispatcher, 109
circuits.web.dispatchers.jsonrpc, 109
circuits.web.dispatchers.static, 110
circuits.web.dispatchers.virtualhosts,

110
circuits.web.dispatchers.xmlrpc, 111
circuits.web.errors, 119
circuits.web.events, 120
circuits.web.exceptions, 123
circuits.web.headers, 126
circuits.web.http, 128
circuits.web.loggers, 128
circuits.web.main, 129
circuits.web.parsers, 115
circuits.web.parsers.http, 112
circuits.web.parsers.multipart, 113
circuits.web.parsers.querystring, 115
circuits.web.processors, 129
circuits.web.servers, 130
circuits.web.sessions, 131
circuits.web.tools, 132
circuits.web.url, 134
circuits.web.utils, 135
circuits.web.websockets, 117
circuits.web.websockets.client, 116
circuits.web.websockets.dispatcher, 116
circuits.web.wrappers, 135
circuits.web.wsgi, 137

155

circuits Documentation, Release 3.2.2

156 Python Module Index

Index

A
absolute() (circuits.web.url.URL method), 134
abspath() (circuits.web.url.URL method), 134
AbstractBasicAuthHandler (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 139

AbstractDigestAuthHandler (cir-
cuits.six.Module_six_moves_urllib_request
attribute), 139

AcceptElement (class in circuits.web.headers), 126
accessed (class in circuits.io.events), 79
add() (circuits.node.node.Node method), 102
add_header() (circuits.web.headers.Headers

method), 127
add_metaclass() (in module circuits.six), 140
add_move() (in module circuits.six), 141
addbase (circuits.six.Module_six_moves_urllib_response

attribute), 140
addclosehook (circuits.six.Module_six_moves_urllib_response

attribute), 140
addHandler() (circuits.core.Manager method), 77
addHandler() (circuits.core.manager.Manager

method), 67
addinfo (circuits.six.Module_six_moves_urllib_response

attribute), 140
addinfourl (circuits.six.Module_six_moves_urllib_response

attribute), 140
addReader() (circuits.core.pollers.BasePoller

method), 69
addReader() (circuits.core.pollers.EPoll method), 70
addReader() (circuits.core.pollers.KQueue method),

70
addReader() (circuits.core.pollers.Poll method), 69
addWriter() (circuits.core.pollers.BasePoller

method), 69
addWriter() (circuits.core.pollers.EPoll method), 70
addWriter() (circuits.core.pollers.KQueue method),

70
addWriter() (circuits.core.pollers.Poll method), 70

alert_done (circuits.core.Event attribute), 75
alert_done (circuits.core.events.Event attribute), 62
append() (circuits.web.headers.Headers method), 128
append() (circuits.web.parsers.multipart.MultiDict

method), 114
Application (class in circuits.web.wsgi), 137
ARRAY (circuits.web.parsers.querystring.QueryStringToken

attribute), 115
assertCountEqual() (in module circuits.six), 141
assertRaisesRegex() (in module circuits.six), 141
assertRegex() (in module circuits.six), 141
Authentication (class in circuits.web.main), 129
average() (in module circuits.web.utils), 135

B
b() (in module circuits.six), 141
BadGateway, 124
BadRequest, 124
base (circuits.web.http.HTTP attribute), 128
BaseComponent (class in circuits.core), 73
BaseComponent (class in circuits.core.components),

59
BaseController (class in circuits.web.controllers),

118
BaseHandler (circuits.six.Module_six_moves_urllib_request

attribute), 139
BasePoller (class in circuits.core.pollers), 69
BaseServer (class in circuits.web.servers), 130
basic_auth() (in module circuits.web.tools), 132
body (circuits.web.wrappers.Response attribute), 136
Body (class in circuits.web.wrappers), 135
Bridge (class in circuits.core), 76
Bridge (class in circuits.core.bridge), 59
broadcast (class in circuits.net.events), 93
broadcast() (circuits.net.sockets.UDPServer

method), 99
build_opener (circuits.six.Module_six_moves_urllib_request

attribute), 140
byte2int() (in module circuits.six), 141

157

circuits Documentation, Release 3.2.2

C
CacheFTPHandler (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 139

call() (circuits.core.Manager method), 77
call() (circuits.core.manager.Manager method), 67
callEvent() (circuits.core.Manager method), 77
callEvent() (circuits.core.manager.Manager

method), 67
CallValue (class in circuits.core.manager), 66
cancel() (circuits.core.Event method), 75
cancel() (circuits.core.events.Event method), 62
canonical() (circuits.web.url.URL method), 134
CaseInsensitiveDict (class in cir-

cuits.web.headers), 127
channel (circuits.app.Daemon attribute), 58
channel (circuits.app.daemon.Daemon attribute), 55
channel (circuits.core.BaseComponent attribute), 74
channel (circuits.core.Bridge attribute), 76
channel (circuits.core.bridge.Bridge attribute), 59
channel (circuits.core.components.BaseComponent at-

tribute), 60
channel (circuits.core.loader.Loader attribute), 66
channel (circuits.core.pollers.BasePoller attribute), 69
channel (circuits.core.pollers.EPoll attribute), 70
channel (circuits.core.pollers.KQueue attribute), 70
channel (circuits.core.pollers.Poll attribute), 70
channel (circuits.core.pollers.Select attribute), 69
channel (circuits.core.Worker attribute), 76
channel (circuits.core.workers.Worker attribute), 72
channel (circuits.io.file.File attribute), 92
channel (circuits.io.process.Process attribute), 92
channel (circuits.io.serial.Serial attribute), 93
channel (circuits.net.sockets.Client attribute), 97
channel (circuits.net.sockets.Server attribute), 98
channel (circuits.node.client.Client attribute), 100
channel (circuits.node.node.Node attribute), 102
channel (circuits.node.server.Server attribute), 103
channel (circuits.protocols.http.HTTP attribute), 104
channel (circuits.protocols.websocket.WebSocketCodec

attribute), 108
channel (circuits.web.client.Client attribute), 117
channel (circuits.web.controllers.BaseController at-

tribute), 118
channel (circuits.web.dispatchers.dispatcher.Dispatcher

attribute), 109
channel (circuits.web.dispatchers.jsonrpc.JSONRPC

attribute), 109
channel (circuits.web.dispatchers.static.Static at-

tribute), 110
channel (circuits.web.dispatchers.virtualhosts.VirtualHosts

attribute), 111
channel (circuits.web.dispatchers.xmlrpc.XMLRPC at-

tribute), 111

channel (circuits.web.http.HTTP attribute), 128
channel (circuits.web.loggers.Logger attribute), 129
channel (circuits.web.main.Authentication attribute),

129
channel (circuits.web.main.HelloWorld attribute), 129
channel (circuits.web.servers.BaseServer attribute),

130
channel (circuits.web.servers.StdinServer attribute),

131
channel (circuits.web.sessions.Sessions attribute), 131
channel (circuits.web.websockets.client.WebSocketClient

attribute), 116
channel (circuits.web.websockets.dispatcher.WebSocketsDispatcher

attribute), 117
channel (circuits.web.wsgi.Application attribute), 137
channel (circuits.web.wsgi.Gateway attribute), 138
channels (circuits.core.Event attribute), 75
channels (circuits.core.events.Event attribute), 62
check_auth() (in module circuits.web.tools), 132
child() (circuits.core.Event method), 75
child() (circuits.core.events.Event method), 62
chunked (circuits.web.wrappers.Response attribute),

137
circuits (module), 47, 142
circuits.app (module), 58
circuits.app.daemon (module), 55
circuits.core (module), 72
circuits.core.bridge (module), 59
circuits.core.components (module), 24, 59
circuits.core.debugger (module), 26, 61
circuits.core.events (module), 61
circuits.core.handlers (module), 65
circuits.core.helpers (module), 65
circuits.core.loader (module), 66
circuits.core.manager (module), 32, 66
circuits.core.pollers (module), 69
circuits.core.timers (module), 70
circuits.core.utils (module), 71
circuits.core.values (module), 33, 71
circuits.core.workers (module), 72
circuits.io (module), 93
circuits.io.events (module), 79
circuits.io.file (module), 92
circuits.io.process (module), 92
circuits.io.serial (module), 93
circuits.net (module), 100
circuits.net.events (module), 93
circuits.net.sockets (module), 97
circuits.node (module), 104
circuits.node.client (module), 100
circuits.node.events (module), 101
circuits.node.node (module), 101
circuits.node.server (module), 103
circuits.node.utils (module), 104

158 Index

circuits Documentation, Release 3.2.2

circuits.protocols (module), 108
circuits.protocols.http (module), 104
circuits.protocols.irc (module), 106
circuits.protocols.line (module), 106
circuits.protocols.websocket (module), 107
circuits.six (module), 138
circuits.tools (module), 108
circuits.version (module), 142
circuits.web (module), 38, 138
circuits.web.client (module), 117
circuits.web.constants (module), 118
circuits.web.controllers (module), 118
circuits.web.dispatchers (module), 112
circuits.web.dispatchers.dispatcher

(module), 109
circuits.web.dispatchers.jsonrpc (mod-

ule), 109
circuits.web.dispatchers.static (module),

110
circuits.web.dispatchers.virtualhosts

(module), 110
circuits.web.dispatchers.xmlrpc (module),

111
circuits.web.errors (module), 119
circuits.web.events (module), 120
circuits.web.exceptions (module), 123
circuits.web.headers (module), 126
circuits.web.http (module), 128
circuits.web.loggers (module), 128
circuits.web.main (module), 129
circuits.web.parsers (module), 115
circuits.web.parsers.http (module), 112
circuits.web.parsers.multipart (module),

113
circuits.web.parsers.querystring (mod-

ule), 115
circuits.web.processors (module), 129
circuits.web.servers (module), 130
circuits.web.sessions (module), 131
circuits.web.tools (module), 132
circuits.web.url (module), 134
circuits.web.utils (module), 135
circuits.web.websockets (module), 117
circuits.web.websockets.client (module),

116
circuits.web.websockets.dispatcher (mod-

ule), 116
circuits.web.wrappers (module), 135
circuits.web.wsgi (module), 137
Client (class in circuits.net.sockets), 97
Client (class in circuits.node.client), 100
Client (class in circuits.web.client), 117
close (circuits.web.wrappers.Response attribute), 137
close (class in circuits.io.events), 80

close (class in circuits.net.events), 94
close() (circuits.io.file.File method), 92
close() (circuits.io.serial.Serial method), 93
close() (circuits.net.sockets.Client method), 97
close() (circuits.net.sockets.Server method), 98
close() (circuits.net.sockets.UDPServer method), 99
close() (circuits.node.client.Client method), 100
close() (circuits.web.client.Client method), 117
close() (circuits.web.websockets.client.WebSocketClient

method), 116
closed (circuits.io.file.File attribute), 92
closed (class in circuits.io.events), 81
closed (class in circuits.net.events), 94
code (circuits.web.errors.forbidden attribute), 119
code (circuits.web.errors.httperror attribute), 119
code (circuits.web.errors.notfound attribute), 119
code (circuits.web.errors.unauthorized attribute), 119
code (circuits.web.exceptions.BadGateway attribute),

124
code (circuits.web.exceptions.BadRequest attribute),

124
code (circuits.web.exceptions.Forbidden attribute), 126
code (circuits.web.exceptions.Gone attribute), 125
code (circuits.web.exceptions.HTTPException at-

tribute), 124
code (circuits.web.exceptions.InternalServerError at-

tribute), 125
code (circuits.web.exceptions.LengthRequired at-

tribute), 126
code (circuits.web.exceptions.MethodNotAllowed

attribute), 125
code (circuits.web.exceptions.NotAcceptable attribute),

124
code (circuits.web.exceptions.NotFound attribute), 126
code (circuits.web.exceptions.NotImplemented at-

tribute), 126
code (circuits.web.exceptions.PreconditionFailed

attribute), 125
code (circuits.web.exceptions.RangeUnsatisfiable

attribute), 125
code (circuits.web.exceptions.Redirect attribute), 123
code (circuits.web.exceptions.RequestEntityTooLarge

attribute), 123
code (circuits.web.exceptions.RequestTimeout at-

tribute), 123
code (circuits.web.exceptions.RequestURITooLarge at-

tribute), 124
code (circuits.web.exceptions.ServiceUnavailable at-

tribute), 123
code (circuits.web.exceptions.Unauthorized attribute),

125
code (circuits.web.exceptions.UnsupportedMediaType

attribute), 123
complete (circuits.core.components.prepare_unregister

Index 159

circuits Documentation, Release 3.2.2

attribute), 60
complete (circuits.core.Event attribute), 75
complete (circuits.core.events.Event attribute), 62
complete (circuits.web.events.request attribute), 120
complete (circuits.web.events.response attribute), 121
complete (circuits.web.events.stream attribute), 122
Component (class in circuits.core), 74
Component (class in circuits.core.components), 60
compress() (in module circuits.web.utils), 135
connect (class in circuits.net.events), 95
connect() (circuits.net.sockets.TCPClient method), 98
connect() (circuits.net.sockets.UNIXClient method),

99
connect() (circuits.node.client.Client method), 100
connect() (circuits.web.client.Client method), 117
connected (circuits.net.sockets.Client attribute), 97
connected (circuits.net.sockets.Server attribute), 98
connected (circuits.web.client.Client attribute), 117
connected (circuits.web.websockets.client.WebSocketClient

attribute), 116
connected (class in circuits.net.events), 95
connected_to (class in circuits.node.events), 101
ContentTooShortError (cir-

cuits.six.Module_six_moves_urllib_error
attribute), 138

Controller (class in circuits.web.controllers), 118
copy_file() (in module cir-

cuits.web.parsers.multipart), 115
create() (circuits.core.Event class method), 75
create() (circuits.core.events.Event class method), 62
create_bound_method() (in module circuits.six),

141
create_environ() (in module circuits.web.wsgi),

138
create_session() (in module cir-

cuits.web.sessions), 132
create_unbound_method() (in module cir-

cuits.six), 141
created (class in circuits.io.events), 81

D
Daemon (class in circuits.app), 58
Daemon (class in circuits.app.daemon), 55
daemonize (class in circuits.app.daemon), 55
daemonize() (circuits.app.Daemon method), 58
daemonize() (circuits.app.daemon.Daemon method),

55
daemonized (class in circuits.app.daemon), 56
data (circuits.web.sessions.MemoryStore attribute), 131
Debugger (class in circuits.core), 76
Debugger (class in circuits.core.debugger), 61
defrag() (circuits.web.url.URL method), 134
delete() (circuits.web.sessions.MemoryStore

method), 131

delete() (circuits.web.sessions.Store method), 131
deleted (class in circuits.io.events), 82
deletepid (class in circuits.app.daemon), 57
deletepid() (circuits.app.Daemon method), 58
deletepid() (circuits.app.daemon.Daemon method),

55
deparam() (circuits.web.url.URL method), 134
deprecated() (in module circuits.tools), 108
description (circuits.web.errors.httperror attribute),

119
description (circuits.web.exceptions.BadGateway

attribute), 124
description (circuits.web.exceptions.BadRequest at-

tribute), 124
description (circuits.web.exceptions.Forbidden at-

tribute), 126
description (circuits.web.exceptions.Gone attribute),

125
description (circuits.web.exceptions.HTTPException

attribute), 124
description (circuits.web.exceptions.InternalServerError

attribute), 125
description (circuits.web.exceptions.LengthRequired

attribute), 126
description (circuits.web.exceptions.NotAcceptable

attribute), 124
description (circuits.web.exceptions.NotFound at-

tribute), 126
description (circuits.web.exceptions.NotImplemented

attribute), 126
description (circuits.web.exceptions.PreconditionFailed

attribute), 125
description (circuits.web.exceptions.RangeUnsatisfiable

attribute), 125
description (circuits.web.exceptions.RequestEntityTooLarge

attribute), 123
description (circuits.web.exceptions.RequestTimeout

attribute), 123
description (circuits.web.exceptions.RequestURITooLarge

attribute), 124
description (circuits.web.exceptions.ServiceUnavailable

attribute), 123
description (circuits.web.exceptions.Unauthorized

attribute), 125
description (circuits.web.exceptions.UnsupportedMediaType

attribute), 123
dictform() (in module circuits.web.utils), 135
digest_auth() (in module circuits.web.tools), 133
discard() (circuits.core.pollers.BasePoller method),

69
discard() (circuits.core.pollers.EPoll method), 70
discard() (circuits.core.pollers.KQueue method), 70
discard() (circuits.core.pollers.Poll method), 70
disconnect (class in circuits.net.events), 95

160 Index

circuits Documentation, Release 3.2.2

disconnected (class in circuits.net.events), 95
disconnected_from (class in circuits.node.events),

101
Dispatcher (class in cir-

cuits.web.dispatchers.dispatcher), 109
display_banner (circuits.web.servers.BaseServer at-

tribute), 130
do_handshake() (in module circuits.net.sockets), 99
done (circuits.web.wrappers.Response attribute), 137
drop_privileges() (circuits.app.DropPrivileges

method), 59
DropPrivileges (class in circuits.app), 59
dump_event() (in module circuits.node.utils), 104
dump_value() (in module circuits.node.utils), 104

E
edges() (in module circuits.tools), 108
elements() (circuits.web.headers.Headers method),

128
encode() (circuits.web.url.URL method), 134
encode_errors (circuits.web.wrappers.Body at-

tribute), 135
eof (class in circuits.io.events), 83
EPoll (class in circuits.core.pollers), 70
equiv() (circuits.web.url.URL method), 134
error (circuits.six.Module_six_moves_urllib attribute),

138
error (class in circuits.io.events), 83
error (class in circuits.net.events), 96
escape() (circuits.web.url.URL method), 134
Event (class in circuits.core), 74
Event (class in circuits.core.events), 61
events() (circuits.core.BaseComponent class

method), 74
events() (circuits.core.components.BaseComponent

class method), 60
exception (class in circuits.core.events), 62
ExceptionWrapper (class in circuits.core.manager),

66
exec_() (in module circuits.six), 141
execute() (circuits.web.parsers.http.HttpParser

method), 112
expire() (circuits.web.sessions.Session method), 131
expired (circuits.core.manager.Sleep attribute), 68
expires() (circuits.web.controllers.BaseController

method), 118
expires() (in module circuits.web.tools), 133
expiry (circuits.core.Timer attribute), 77
expiry (circuits.core.timers.Timer attribute), 71
expose() (in module circuits.web.controllers), 119
exposeJSON() (in module circuits.web.controllers),

119
ExposeJSONMetaClass (class in cir-

cuits.web.controllers), 118

ExposeMetaClass (class in circuits.web.controllers),
118

extract() (circuits.core.manager.ExceptionWrapper
method), 66

F
failure (circuits.core.Event attribute), 75
failure (circuits.core.events.Event attribute), 62
failure (circuits.core.task attribute), 75
failure (circuits.core.workers.task attribute), 72
failure (circuits.web.events.request attribute), 120
failure (circuits.web.events.response attribute), 121
failure (circuits.web.events.stream attribute), 122
FakeSock (class in circuits.web.servers), 130
FallBackExceptionHandler (class in cir-

cuits.core.helpers), 65
FallBackGenerator (class in circuits.core.helpers),

66
FallBackSignalHandler (class in cir-

cuits.core.helpers), 66
FancyURLopener (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 139

feed() (circuits.web.parsers.multipart.MultipartPart
method), 114

File (class in circuits.io.file), 92
file_generator() (in module cir-

cuits.web.wrappers), 137
FileHandler (circuits.six.Module_six_moves_urllib_request

attribute), 139
filename (circuits.io.file.File attribute), 92
find_handlers() (in module cir-

cuits.web.dispatchers.dispatcher), 109
findchannel() (in module circuits.core.utils), 71
findcmp() (in module circuits.core.utils), 71
findroot() (in module circuits.core.utils), 71
findroot() (in module circuits.tools), 108
findtype() (in module circuits.core.utils), 71
finish_header() (cir-

cuits.web.parsers.multipart.MultipartPart
method), 114

fire() (circuits.core.Manager method), 78
fire() (circuits.core.manager.Manager method), 67
fireEvent() (circuits.core.Manager method), 78
fireEvent() (circuits.core.manager.Manager

method), 67
flatten() (in module circuits.core.utils), 71
flush() (circuits.core.Manager method), 78
flush() (circuits.core.manager.Manager method), 67
flushEvents() (circuits.core.Manager method), 78
flushEvents() (circuits.core.manager.Manager

method), 68
Forbidden, 126
forbidden (class in circuits.web.errors), 119

Index 161

circuits Documentation, Release 3.2.2

forbidden() (circuits.web.controllers.BaseController
method), 118

format (circuits.web.loggers.Logger attribute), 129
format_traceback() (cir-

cuits.core.events.exception method), 62
formatdate() (in module circuits.web.wrappers), 137
formattime() (in module circuits.web.loggers), 129
from_str() (circuits.web.headers.AcceptElement

class method), 126
from_str() (circuits.web.headers.HeaderElement

class method), 127
fromkeys() (circuits.web.headers.CaseInsensitiveDict

class method), 127
FTPHandler (circuits.six.Module_six_moves_urllib_request

attribute), 139

G
Gateway (class in circuits.web.wsgi), 137
generate_events (class in circuits.core.events), 62
get() (circuits.web.headers.CaseInsensitiveDict

method), 127
get() (circuits.web.parsers.multipart.MultiDict

method), 114
get() (circuits.web.parsers.multipart.MultipartParser

method), 114
get_all() (circuits.web.headers.Headers method),

128
get_all() (circuits.web.parsers.multipart.MultipartParser

method), 114
get_connection_names() (cir-

cuits.node.node.Node method), 102
get_headers() (circuits.web.parsers.http.HttpParser

method), 112
get_method() (circuits.web.parsers.http.HttpParser

method), 112
get_path() (circuits.web.parsers.http.HttpParser

method), 112
get_peer() (circuits.node.node.Node method), 103
get_query_string() (cir-

cuits.web.parsers.http.HttpParser method),
112

get_ranges() (in module circuits.web.utils), 135
get_scheme() (circuits.web.parsers.http.HttpParser

method), 112
get_socks() (circuits.node.server.Server method),

103
get_status_code() (cir-

cuits.web.parsers.http.HttpParser method),
112

get_unbound_function() (in module circuits.six),
141

get_url() (circuits.web.parsers.http.HttpParser
method), 112

get_version() (circuits.web.parsers.http.HttpParser
method), 112

getall() (circuits.web.parsers.multipart.MultiDict
method), 114

getargspec() (in module circuits.tools), 108
getHandlers() (circuits.core.Manager method), 78
getHandlers() (circuits.core.manager.Manager

method), 68
getpeername() (circuits.web.servers.FakeSock

method), 130
getproxies (circuits.six.Module_six_moves_urllib_request

attribute), 140
getRequestResponse() (cir-

cuits.web.wsgi.Application method), 137
getTarget() (circuits.core.pollers.BasePoller

method), 69
getValue() (circuits.core.values.Value method), 71
Gone, 125
graph() (in module circuits.tools), 108
graph_ascii() (in module circuits.tools), 108
graph_dot() (in module circuits.tools), 108
graph_png() (in module circuits.tools), 108
gzip() (in module circuits.web.tools), 133

H
handled (circuits.web.wrappers.Request attribute), 136
handler() (in module circuits.core), 72
handler() (in module circuits.core.handlers), 65
HandlerMetaClass (class in circuits.core.handlers),

65
handlers() (circuits.core.BaseComponent class

method), 74
handlers() (circuits.core.components.BaseComponent

class method), 60
handles() (circuits.core.BaseComponent class

method), 74
handles() (circuits.core.components.BaseComponent

class method), 60
header_elements() (in module cir-

cuits.web.headers), 128
header_quote() (in module cir-

cuits.web.parsers.multipart), 115
header_unquote() (in module cir-

cuits.web.parsers.multipart), 115
HeaderElement (class in circuits.web.headers), 127
headerNames (circuits.web.wsgi.Application at-

tribute), 137
headers (circuits.web.tools.ReverseProxy attribute),

132
Headers (class in circuits.web.headers), 127
hello() (circuits.web.main.Root method), 129
HelloWorld (class in circuits.web.main), 129
host (circuits.net.sockets.Server attribute), 98
host (circuits.node.server.Server attribute), 103

162 Index

circuits Documentation, Release 3.2.2

host (circuits.web.servers.BaseServer attribute), 130
host (circuits.web.servers.StdinServer attribute), 131
host (circuits.web.wrappers.Request attribute), 136
host (circuits.web.wsgi.Application attribute), 137
Host (class in circuits.web.wrappers), 136
HTTP (class in circuits.protocols.http), 104
HTTP (class in circuits.web.http), 128
HTTPBasicAuthHandler (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 139

HTTPCookieProcessor (cir-
cuits.six.Module_six_moves_urllib_request
attribute), 139

HTTPDefaultErrorHandler (cir-
cuits.six.Module_six_moves_urllib_request
attribute), 139

HTTPDigestAuthHandler (cir-
cuits.six.Module_six_moves_urllib_request
attribute), 139

HTTPError (circuits.six.Module_six_moves_urllib_error
attribute), 138

httperror (class in circuits.web.errors), 119
HTTPErrorProcessor (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 139

HTTPException, 117, 124
HTTPHandler (circuits.six.Module_six_moves_urllib_request

attribute), 139
HttpParser (class in circuits.web.parsers.http), 112
HTTPPasswordMgr (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 140

HTTPPasswordMgrWithDefaultRealm (cir-
cuits.six.Module_six_moves_urllib_request
attribute), 140

HTTPRedirectHandler (cir-
cuits.six.Module_six_moves_urllib_request
attribute), 140

HTTPSHandler (circuits.six.Module_six_moves_urllib_request
attribute), 140

HTTPStatus (class in circuits.web.wrappers), 135

I
IgnoreChannels (circuits.core.Debugger attribute),

76
IgnoreChannels (circuits.core.debugger.Debugger

attribute), 61
IgnoreEvents (circuits.core.Debugger attribute), 76
IgnoreEvents (circuits.core.debugger.Debugger at-

tribute), 61
in_subtree() (circuits.core.components.prepare_unregister

method), 61
index (circuits.web.wrappers.Request attribute), 136
indexbytes() (in module circuits.six), 141

inform() (circuits.core.values.Value method), 71
init() (circuits.app.Daemon method), 58
init() (circuits.app.daemon.Daemon method), 55
init() (circuits.app.DropPrivileges method), 59
init() (circuits.core.Bridge method), 76
init() (circuits.core.bridge.Bridge method), 59
init() (circuits.core.Worker method), 76
init() (circuits.core.workers.Worker method), 72
init() (circuits.io.file.File method), 92
init() (circuits.io.process.Process method), 92
init() (circuits.net.sockets.TCPClient method), 98
init() (circuits.web.tools.ReverseProxy method), 132
init() (circuits.web.wsgi.Application method), 137
init() (circuits.web.wsgi.Gateway method), 138
inspect() (in module circuits.tools), 109
install_opener (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 140

InternalServerError, 125
InvalidChunkSize, 113
InvalidHeader, 113
InvalidRequestLine, 113
ip (circuits.web.wrappers.Host attribute), 136
ipc (class in circuits.core), 76
ipc (class in circuits.core.bridge), 59
is_buffered() (cir-

cuits.web.parsers.multipart.MultipartPart
method), 114

is_chunked() (circuits.web.parsers.http.HttpParser
method), 112

is_headers_complete() (cir-
cuits.web.parsers.http.HttpParser method),
112

is_message_begin() (cir-
cuits.web.parsers.http.HttpParser method),
112

is_message_complete() (cir-
cuits.web.parsers.http.HttpParser method),
112

is_partial_body() (cir-
cuits.web.parsers.http.HttpParser method),
113

is_unix_socket() (in module circuits.web.utils),
135

is_upgrade() (circuits.web.parsers.http.HttpParser
method), 113

isReading() (circuits.core.pollers.BasePoller
method), 69

isWriting() (circuits.core.pollers.BasePoller
method), 69

items() (circuits.web.headers.Headers method), 128
iterallitems() (cir-

cuits.web.parsers.multipart.MultiDict method),
114

Index 163

circuits Documentation, Release 3.2.2

Iterator (class in circuits.six), 138
iteritems() (in module circuits.six), 141
iterkeys() (in module circuits.six), 141
iterlists() (in module circuits.six), 141
itervalues() (in module circuits.six), 141

J
join() (circuits.core.Manager method), 78
join() (circuits.core.manager.Manager method), 68
JSONController (class in circuits.web.controllers),

118
JSONRPC (class in circuits.web.dispatchers.jsonrpc),

109

K
KEY (circuits.web.parsers.querystring.QueryStringToken

attribute), 115
keys() (circuits.web.parsers.multipart.MultiDict

method), 114
kill() (circuits.io.process.Process method), 92
kill() (in module circuits.tools), 109
KQueue (class in circuits.core.pollers), 70

L
LengthRequired, 126
Line (class in circuits.protocols.line), 106
line (class in circuits.protocols.line), 107
load() (circuits.core.loader.Loader method), 66
load() (circuits.web.sessions.MemoryStore method),

131
load() (circuits.web.sessions.Store method), 131
load_event() (in module circuits.node.utils), 104
load_value() (in module circuits.node.utils), 104
Loader (class in circuits.core.loader), 66
local (circuits.web.wrappers.Request attribute), 136
lock (circuits.core.events.generate_events attribute), 63
log() (circuits.web.loggers.Logger method), 129
log_response() (circuits.web.loggers.Logger

method), 129
Logger (class in circuits.web.loggers), 128
login (circuits.web.wrappers.Request attribute), 136
lower() (circuits.web.url.URL method), 134

M
main() (in module circuits.web.main), 129
Manager (class in circuits.core), 77
Manager (class in circuits.core.manager), 66
MemoryStore (class in circuits.web.sessions), 131
MethodNotAllowed, 125
mode (circuits.io.file.File attribute), 92
modified (class in circuits.io.events), 84
Module_six_moves_urllib (class in circuits.six),

138

Module_six_moves_urllib_error (class in cir-
cuits.six), 138

Module_six_moves_urllib_parse (class in cir-
cuits.six), 138

Module_six_moves_urllib_request (class in
circuits.six), 139

Module_six_moves_urllib_response (class in
circuits.six), 140

Module_six_moves_urllib_robotparser
(class in circuits.six), 140

moved (class in circuits.io.events), 85
MovedAttribute (class in circuits.six), 140
MovedModule (class in circuits.six), 140
MultiDict (class in circuits.web.parsers.multipart),

114
MultipartError, 114
MultipartParser (class in cir-

cuits.web.parsers.multipart), 114
MultipartPart (class in cir-

cuits.web.parsers.multipart), 114

N
name (circuits.core.Manager attribute), 78
name (circuits.core.manager.Manager attribute), 68
name (circuits.web.exceptions.HTTPException at-

tribute), 124
name (circuits.web.sessions.Sessions attribute), 131
name (circuits.web.wrappers.Host attribute), 136
next() (circuits.six.Iterator method), 138
Node (class in circuits.node.node), 101
NotAcceptable, 124
NotConnected, 117
NotFound, 126
notfound (class in circuits.web.errors), 119
notfound() (circuits.web.controllers.BaseController

method), 118
notify (circuits.core.Event attribute), 75
notify (circuits.core.events.Event attribute), 62
NotImplemented, 126

O
OBJECT (circuits.web.parsers.querystring.QueryStringToken

attribute), 115
on_ready() (circuits.app.DropPrivileges method), 59
on_response() (circuits.web.wsgi.Application

method), 137
on_started() (circuits.app.Daemon method), 58
on_started() (circuits.app.daemon.Daemon

method), 55
open (class in circuits.io.events), 85
opened (class in circuits.io.events), 86
OpenerDirector (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 140

164 Index

circuits Documentation, Release 3.2.2

P
parent (circuits.core.Event attribute), 75
parent (circuits.core.events.Event attribute), 62
parse (circuits.six.Module_six_moves_urllib attribute),

138
parse() (circuits.web.headers.HeaderElement static

method), 127
parse() (circuits.web.parsers.querystring.QueryStringParser

method), 115
parse() (circuits.web.url.URL class method), 134
parse_bind() (in module circuits.web.main), 129
parse_bind_parameter() (cir-

cuits.net.sockets.Client method), 97
parse_bind_parameter() (cir-

cuits.net.sockets.Server method), 98
parse_bind_parameter() (cir-

cuits.net.sockets.TCP6Client method), 98
parse_bind_parameter() (cir-

cuits.net.sockets.TCP6Server method), 98
parse_bind_parameter() (cir-

cuits.net.sockets.TCPServer method), 99
parse_bind_parameter() (cir-

cuits.net.sockets.UDP6Server method), 99
parse_body() (in module circuits.web.utils), 135
parse_form_data() (in module cir-

cuits.web.parsers.multipart), 115
parse_ipv4_parameter() (in module cir-

cuits.net.sockets), 100
parse_ipv6_parameter() (in module cir-

cuits.net.sockets), 100
parse_options() (in module circuits.web.main), 129
parse_options_header() (in module cir-

cuits.web.parsers.multipart), 115
parse_qs (circuits.six.Module_six_moves_urllib_parse

attribute), 138
parse_qs() (in module circuits.web.utils), 135
parse_qsl (circuits.six.Module_six_moves_urllib_parse

attribute), 138
parse_url() (in module circuits.web.client), 117
parse_url() (in module circuits.web.url), 135
ParseResult (circuits.six.Module_six_moves_urllib_parse

attribute), 138
parts() (circuits.web.parsers.multipart.MultipartParser

method), 114
pathname2url (circuits.six.Module_six_moves_urllib_request

attribute), 140
pid (circuits.core.Manager attribute), 78
pid (circuits.core.manager.Manager attribute), 68
Pipe() (in module circuits.net.sockets), 98
Poll (class in circuits.core.pollers), 69
Poller (in module circuits.core.pollers), 69
pop() (circuits.web.headers.CaseInsensitiveDict

method), 127
port (circuits.net.sockets.Server attribute), 98

port (circuits.node.server.Server attribute), 103
port (circuits.web.servers.BaseServer attribute), 130
port (circuits.web.servers.StdinServer attribute), 131
port (circuits.web.wrappers.Host attribute), 136
port (circuits.web.wsgi.Application attribute), 137
PreconditionFailed, 125
prepare() (circuits.web.wrappers.Response method),

137
prepare_unregister (class in cir-

cuits.core.components), 60
print_() (in module circuits.six), 141
Process (class in circuits.io.process), 92
process() (circuits.web.parsers.querystring.QueryStringParser

method), 115
process() (in module circuits.web.processors), 129
process_multipart() (in module cir-

cuits.web.processors), 129
process_urlencoded() (in module cir-

cuits.web.processors), 129
processTask() (circuits.core.Manager method), 78
processTask() (circuits.core.manager.Manager

method), 68
protocol (circuits.web.http.HTTP attribute), 128
protocol (circuits.web.wrappers.Request attribute),

136
proxy_bypass (circuits.six.Module_six_moves_urllib_request

attribute), 140
ProxyBasicAuthHandler (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 140

ProxyDigestAuthHandler (cir-
cuits.six.Module_six_moves_urllib_request
attribute), 140

ProxyHandler (circuits.six.Module_six_moves_urllib_request
attribute), 140

punycode() (circuits.web.url.URL method), 134
python_2_unicode_compatible() (in module

circuits.six), 141

Q
QueryStringParser (class in cir-

cuits.web.parsers.querystring), 115
QueryStringToken (class in cir-

cuits.web.parsers.querystring), 115
quote (circuits.six.Module_six_moves_urllib_parse at-

tribute), 139
quote_plus (circuits.six.Module_six_moves_urllib_parse

attribute), 139
qvalue (circuits.web.headers.AcceptElement attribute),

126

R
raise_from() (in module circuits.six), 141
RangeUnsatisfiable, 124

Index 165

circuits Documentation, Release 3.2.2

read (class in circuits.io.events), 87
read (class in circuits.net.events), 96
read() (circuits.protocols.http.ResponseObject

method), 104
read() (circuits.web.servers.StdinServer method), 131
ready (class in circuits.io.events), 87
ready (class in circuits.net.events), 96
ready() (circuits.net.sockets.UNIXClient method), 99
realm (circuits.web.main.Authentication attribute), 129
reason (circuits.web.wrappers.HTTPStatus attribute),

135
recv_body() (circuits.web.parsers.http.HttpParser

method), 113
recv_body_into() (cir-

cuits.web.parsers.http.HttpParser method),
113

Redirect, 123
redirect (class in circuits.web.errors), 119
redirect() (circuits.web.controllers.BaseController

method), 118
reduce_time_left() (cir-

cuits.core.events.generate_events method),
63

register() (circuits.core.BaseComponent method),
74

register() (circuits.core.components.BaseComponent
method), 60

registerChild() (circuits.core.Manager method),
78

registerChild() (circuits.core.manager.Manager
method), 68

registered (class in circuits.core.events), 63
registered() (circuits.app.Daemon method), 58
registered() (circuits.app.daemon.Daemon

method), 55
registerTask() (circuits.core.Manager method), 78
registerTask() (circuits.core.manager.Manager

method), 68
relative() (circuits.web.url.URL method), 134
remote (circuits.web.wrappers.Request attribute), 136
remote (class in circuits.node.events), 101
remove_move() (in module circuits.six), 141
removeHandler() (circuits.core.Manager method),

78
removeHandler() (circuits.core.manager.Manager

method), 68
removeReader() (circuits.core.pollers.BasePoller

method), 69
removeReader() (circuits.core.pollers.EPoll

method), 70
removeReader() (circuits.core.pollers.KQueue

method), 70
removeReader() (circuits.core.pollers.Poll method),

70

removeWriter() (circuits.core.pollers.BasePoller
method), 69

removeWriter() (circuits.core.pollers.EPoll
method), 70

removeWriter() (circuits.core.pollers.KQueue
method), 70

removeWriter() (circuits.core.pollers.Poll method),
70

replace() (circuits.web.parsers.multipart.MultiDict
method), 114

reprhandler() (in module circuits.core.handlers), 65
request (circuits.six.Module_six_moves_urllib at-

tribute), 138
Request (circuits.six.Module_six_moves_urllib_request

attribute), 140
request (class in circuits.protocols.http), 104
request (class in circuits.web.client), 117
request (class in circuits.web.events), 120
Request (class in circuits.web.wrappers), 136
request() (circuits.web.client.Client method), 117
request() (circuits.web.main.Authentication method),

129
request() (circuits.web.main.HelloWorld method),

129
request() (circuits.web.sessions.Sessions method),

131
RequestEntityTooLarge, 123
RequestTimeout, 123
RequestURITooLarge, 123
reraise() (in module circuits.six), 141
reset() (circuits.core.Timer method), 77
reset() (circuits.core.timers.Timer method), 71
resolve_methods() (in module cir-

cuits.web.dispatchers.dispatcher), 109
resolve_path() (in module cir-

cuits.web.dispatchers.dispatcher), 109
response (circuits.six.Module_six_moves_urllib at-

tribute), 138
response (circuits.web.client.Client attribute), 117
response (class in circuits.protocols.http), 105
response (class in circuits.web.events), 120
Response (class in circuits.web.wrappers), 136
ResponseObject (class in circuits.protocols.http),

104
resume() (circuits.core.helpers.FallBackGenerator

method), 66
resume() (circuits.core.pollers.BasePoller method), 69
ReverseProxy (class in circuits.web.tools), 132
RFC

RFC 7538, 148
RobotFileParser (cir-

cuits.six.Module_six_moves_urllib_robotparser
attribute), 140

robotparser (circuits.six.Module_six_moves_urllib

166 Index

circuits Documentation, Release 3.2.2

attribute), 138
Root (class in circuits.web.main), 129
rpc (class in circuits.web.dispatchers.jsonrpc), 109
rpc (class in circuits.web.dispatchers.xmlrpc), 111
run() (circuits.core.Manager method), 78
run() (circuits.core.manager.Manager method), 68
running (circuits.core.Manager attribute), 78
running (circuits.core.manager.Manager attribute), 68

S
safeimport() (in module circuits.core.utils), 71
sanitize() (circuits.web.errors.httperror method),

119
sanitize() (circuits.web.url.URL method), 134
save() (circuits.web.sessions.MemoryStore method),

131
save() (circuits.web.sessions.Store method), 131
save_as() (circuits.web.parsers.multipart.MultipartPart

method), 114
scheme (circuits.web.http.HTTP attribute), 128
scheme (circuits.web.wrappers.Request attribute), 136
script_name (circuits.web.wrappers.Request at-

tribute), 136
secure (circuits.web.servers.BaseServer attribute), 130
secure (circuits.web.servers.StdinServer attribute), 131
secure (circuits.web.wsgi.Application attribute), 137
seek (class in circuits.io.events), 88
seek() (circuits.io.file.File method), 92
Select (class in circuits.core.pollers), 69
select_poller() (in module circuits.web.main), 129
select_subprotocol() (cir-

cuits.web.websockets.dispatcher.WebSocketsDispatcher
method), 117

send() (circuits.node.client.Client method), 100
send() (circuits.node.server.Server method), 103
send_all() (circuits.node.server.Server method), 104
send_to() (circuits.node.server.Server method), 104
Serial (class in circuits.io.serial), 93
serve_download() (cir-

cuits.web.controllers.BaseController method),
118

serve_download() (in module circuits.web.tools),
133

serve_file() (circuits.web.controllers.BaseController
method), 118

serve_file() (in module circuits.web.tools), 133
server (circuits.web.wrappers.Request attribute), 136
Server (class in circuits.net.sockets), 98
Server (class in circuits.node.server), 103
Server (class in circuits.web.servers), 130
ServiceUnavailable, 123
Session (class in circuits.web.sessions), 131
Sessions (class in circuits.web.sessions), 131

setdefault() (circuits.web.headers.CaseInsensitiveDict
method), 127

setValue() (circuits.core.values.Value method), 71
should_keep_alive() (cir-

cuits.web.parsers.http.HttpParser method),
113

sid (circuits.web.sessions.Session attribute), 131
signal (class in circuits.core.events), 63
signal() (circuits.io.process.Process method), 92
Sleep (class in circuits.core.manager), 68
sleep() (in module circuits.core.manager), 69
socket_family (circuits.net.sockets.Client attribute),

97
socket_family (circuits.net.sockets.TCP6Client at-

tribute), 98
socket_family (circuits.net.sockets.TCP6Server at-

tribute), 98
socket_family (circuits.net.sockets.TCPClient at-

tribute), 98
socket_family (circuits.net.sockets.TCPServer at-

tribute), 99
socket_family (circuits.net.sockets.UDP6Server at-

tribute), 99
socket_family (circuits.net.sockets.UDPServer at-

tribute), 99
socket_family (circuits.net.sockets.UNIXClient at-

tribute), 99
socket_family (circuits.net.sockets.UNIXServer at-

tribute), 99
socket_options (circuits.net.sockets.Client at-

tribute), 98
socket_options (circuits.net.sockets.TCPClient at-

tribute), 98
socket_options (circuits.net.sockets.TCPServer at-

tribute), 99
socket_options (circuits.net.sockets.UDPServer at-

tribute), 99
socket_options (circuits.net.sockets.UNIXClient at-

tribute), 99
socket_options (circuits.net.sockets.UNIXServer at-

tribute), 99
socket_protocol (circuits.net.sockets.Client at-

tribute), 98
socket_protocol (circuits.net.sockets.Server at-

tribute), 98
socket_protocol (circuits.net.sockets.TCPClient at-

tribute), 98
socket_type (circuits.net.sockets.Client attribute), 98
socket_type (circuits.net.sockets.TCPClient at-

tribute), 98
socket_type (circuits.net.sockets.TCPServer at-

tribute), 99
socket_type (circuits.net.sockets.UDPServer at-

tribute), 99

Index 167

circuits Documentation, Release 3.2.2

socket_type (circuits.net.sockets.UNIXClient at-
tribute), 99

socket_type (circuits.net.sockets.UNIXServer at-
tribute), 99

splitLines() (in module circuits.protocols.line), 107
splitquery (circuits.six.Module_six_moves_urllib_parse

attribute), 139
SplitResult (circuits.six.Module_six_moves_urllib_parse

attribute), 138
splittag (circuits.six.Module_six_moves_urllib_parse

attribute), 139
splituser (circuits.six.Module_six_moves_urllib_parse

attribute), 139
splitvalue (circuits.six.Module_six_moves_urllib_parse

attribute), 139
start() (circuits.core.Manager method), 78
start() (circuits.core.manager.Manager method), 68
start() (circuits.io.process.Process method), 92
started (class in circuits.core.events), 63
started (class in circuits.io.events), 89
starttls (class in circuits.net.events), 96
starttls() (circuits.net.sockets.Server method), 98
Static (class in circuits.web.dispatchers.static), 110
status (circuits.io.process.Process attribute), 92
status (circuits.web.wrappers.HTTPStatus attribute),

136
status (circuits.web.wrappers.Response attribute), 137
Status (class in circuits.web.wrappers), 137
stddev() (in module circuits.web.utils), 135
StdinServer (class in circuits.web.servers), 130
stop() (circuits.core.Event method), 75
stop() (circuits.core.events.Event method), 62
stop() (circuits.core.Manager method), 79
stop() (circuits.core.manager.Manager method), 68
stop() (circuits.io.process.Process method), 92
stopped (class in circuits.core.events), 64
stopped (class in circuits.io.events), 89
store (circuits.web.sessions.Session attribute), 131
store (circuits.web.sessions.Sessions attribute), 131
Store (class in circuits.web.sessions), 131
stream (circuits.web.wrappers.Response attribute), 137
stream (class in circuits.web.events), 121
success (circuits.core.Event attribute), 75
success (circuits.core.events.Event attribute), 62
success (circuits.core.task attribute), 75
success (circuits.core.workers.task attribute), 72
success (circuits.web.events.request attribute), 120
success (circuits.web.events.response attribute), 121
success (circuits.web.events.stream attribute), 122

T
task (circuits.core.manager.Sleep attribute), 69
task (class in circuits.core), 75
task (class in circuits.core.workers), 72

TCP6Client (class in circuits.net.sockets), 98
TCP6Server (class in circuits.net.sockets), 98
TCPClient (class in circuits.net.sockets), 98
TCPServer (class in circuits.net.sockets), 98
terminate (class in circuits.web.events), 122
terminated (class in circuits.io.process), 93
tick() (circuits.core.Manager method), 79
tick() (circuits.core.manager.Manager method), 68
time_left (circuits.core.events.generate_events at-

tribute), 63
TimeoutError, 69, 79
Timer (class in circuits.core), 76
Timer (class in circuits.core.timers), 70
tob() (in module circuits.web.parsers.multipart), 115
tokens() (circuits.web.parsers.querystring.QueryStringParser

method), 115
traceback (circuits.web.exceptions.HTTPException

attribute), 124
translateHeaders() (cir-

cuits.web.wsgi.Application method), 137
tryimport() (in module circuits.tools), 109

U
u() (in module circuits.six), 141
UDP6Client (in module circuits.net.sockets), 99
UDP6Server (class in circuits.net.sockets), 99
UDPClient (in module circuits.net.sockets), 99
UDPServer (class in circuits.net.sockets), 99
Unauthorized, 125
unauthorized (class in circuits.web.errors), 119
unescape() (circuits.web.url.URL method), 134
unicode() (circuits.web.url.URL method), 134
UnicodeError, 124
UNIXClient (class in circuits.net.sockets), 99
UNIXServer (class in circuits.net.sockets), 99
Unknown (class in circuits.core.handlers), 65
UnknownHandler (cir-

cuits.six.Module_six_moves_urllib_request
attribute), 140

unmounted (class in circuits.io.events), 90
unpunycode() (circuits.web.url.URL method), 135
unquote (circuits.six.Module_six_moves_urllib_parse

attribute), 139
unquote_plus (circuits.six.Module_six_moves_urllib_parse

attribute), 139
unreachable (class in circuits.net.events), 97
unregister() (circuits.core.BaseComponent

method), 74
unregister() (circuits.core.components.BaseComponent

method), 60
unregister_pending (cir-

cuits.core.BaseComponent attribute), 74
unregister_pending (cir-

cuits.core.components.BaseComponent at-

168 Index

circuits Documentation, Release 3.2.2

tribute), 60
unregisterChild() (circuits.core.Manager

method), 79
unregisterChild() (cir-

cuits.core.manager.Manager method), 68
unregistered (class in circuits.core.events), 64
unregisterTask() (circuits.core.Manager method),

79
unregisterTask() (circuits.core.manager.Manager

method), 68
UnregistrableError, 69
UnsupportedMediaType, 123
update() (circuits.web.headers.CaseInsensitiveDict

method), 127
uri (circuits.web.controllers.BaseController attribute),

118
uri (circuits.web.http.HTTP attribute), 128
URL (class in circuits.web.url), 134
url2pathname (circuits.six.Module_six_moves_urllib_request

attribute), 140
urlcleanup (circuits.six.Module_six_moves_urllib_request

attribute), 140
urldefrag (circuits.six.Module_six_moves_urllib_parse

attribute), 139
urlencode (circuits.six.Module_six_moves_urllib_parse

attribute), 139
URLError (circuits.six.Module_six_moves_urllib_error

attribute), 138
urljoin (circuits.six.Module_six_moves_urllib_parse

attribute), 139
urlopen (circuits.six.Module_six_moves_urllib_request

attribute), 140
URLopener (circuits.six.Module_six_moves_urllib_request

attribute), 140
urlparse (circuits.six.Module_six_moves_urllib_parse

attribute), 139
urlretrieve (circuits.six.Module_six_moves_urllib_request

attribute), 140
urlsplit (circuits.six.Module_six_moves_urllib_parse

attribute), 139
urlunparse (circuits.six.Module_six_moves_urllib_parse

attribute), 139
urlunsplit (circuits.six.Module_six_moves_urllib_parse

attribute), 139
users (circuits.web.main.Authentication attribute), 129
uses_fragment (cir-

cuits.six.Module_six_moves_urllib_parse
attribute), 139

uses_netloc (circuits.six.Module_six_moves_urllib_parse
attribute), 139

uses_params (circuits.six.Module_six_moves_urllib_parse
attribute), 139

uses_query (circuits.six.Module_six_moves_urllib_parse
attribute), 139

uses_relative (cir-
cuits.six.Module_six_moves_urllib_parse
attribute), 139

utf8() (circuits.web.url.URL method), 135

V
validate_etags() (in module circuits.web.tools),

133
validate_since() (in module circuits.web.tools),

134
value (circuits.core.values.Value attribute), 71
value (circuits.web.parsers.multipart.MultipartPart at-

tribute), 114
Value (class in circuits.core.values), 71
variance() (in module circuits.web.utils), 135
VCS, 152
verify_session() (in module cir-

cuits.web.sessions), 132
version (circuits.web.http.HTTP attribute), 128
VirtualHosts (class in cir-

cuits.web.dispatchers.virtualhosts), 111

W
wait() (circuits.core.Manager method), 79
wait() (circuits.core.manager.Manager method), 68
wait() (circuits.io.process.Process method), 92
waitEvent() (circuits.core.Manager method), 79
waitEvent() (circuits.core.manager.Manager

method), 68
waitingHandlers (circuits.core.Event attribute), 75
waitingHandlers (circuits.core.events.Event at-

tribute), 62
walk() (in module circuits.tools), 109
WebSocketClient (class in cir-

cuits.web.websockets.client), 116
WebSocketCodec (class in cir-

cuits.protocols.websocket), 107
WebSocketsDispatcher (class in cir-

cuits.web.websockets.dispatcher), 116
who() (in module circuits.web.sessions), 132
with_metaclass() (in module circuits.six), 141
Worker (class in circuits.core), 75
Worker (class in circuits.core.workers), 72
wraps() (in module circuits.six), 141
write (class in circuits.io.events), 91
write (class in circuits.net.events), 97
write() (circuits.io.file.File method), 92
write() (circuits.io.process.Process method), 92
write() (circuits.io.serial.Serial method), 93
write() (circuits.net.sockets.Client method), 98
write() (circuits.net.sockets.Server method), 98
write() (circuits.net.sockets.UDPServer method), 99
write() (circuits.web.client.Client method), 117

Index 169

circuits Documentation, Release 3.2.2

write() (circuits.web.servers.StdinServer method),
131

write_body() (circuits.web.parsers.multipart.MultipartPart
method), 115

write_header() (cir-
cuits.web.parsers.multipart.MultipartPart
method), 115

writepid (class in circuits.app.daemon), 57
writepid() (circuits.app.Daemon method), 58
writepid() (circuits.app.daemon.Daemon method),

55

X
XMLRPC (class in circuits.web.dispatchers.xmlrpc), 111

170 Index

	About
	Documentation
	Indices and tables
	Python Module Index
	Index

