

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	circuits 2.0.1 documentation

circuits 2.0.1 Documentation

	Release:	2.0.1

	Date:	March 03, 2013

Contents

	Getting Started

	Tutorial

	The circuits Framework

	The circuits.web Framework

	HowTos

	API Reference

	Developer Docs

	ChangeLog

	Users

	Contributors

	Frequently Asked Questions

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Getting Started

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

Getting Started

	Quick Start Guide

	Downloading
	Latest Stable Release

	Latest Development Source Code

	Installing
	Installing from a Source Package

	Installing from the Development Repository

	Requirements and Dependencies
	Other Optional Dependencies

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Quick Start Guide

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	Getting Started

Quick Start Guide

The easiest way to download and install circuits is to use the
pip [http://pypi.python.org/pypi/pip] command:

$ pip install circuits

Now that you have successfully downloaded and installed circuits, let’s
test that circuits is properly installed and working.

First, let’s check the installed version:

>>> import circuits
>>> print circuits.__version__
1.3

Try some of the examples in the examples/ directory shipped with the
distribution or check out some Applications using circuits

Have fun :)

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Downloading

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	Getting Started

Downloading

Latest Stable Release

The latest stable releases can be downloaded from the
Downloads [http://bitbucket.org/prologic/circuits/downloads/] page.

Latest Development Source Code

We use Mercurial [http://mercurial.selenic.com/] for source control
and code sharing.

The latest development branch can be cloned using the following command:

$ hg clone http://bitbucket.org/prologic/circuits/

For further instructions on how to use Mercurial, please refer to the
Mercurial Book [http://mercurial.selenic.com/wiki/MercurialBook].

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Installing

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	Getting Started

Installing

If you have not installed circuits via the the
setuptools [http://pypi.python.org/pypi/setuptools] easy_install tool,
then the following installation instructions will apply to you. Either
you’ve downloaded a source package or cloned the development repository.

Installing from a Source Package

$ python setup.py install

For other installation options see:

$ python setup.py --help install

Installing from the Development Repository

If you have cloned the development repository, it is recommended that you
use setuptools and use the following command:

$ python setup.py build develop

NB: The “build” command is required when installing from the development
repository (build creates the version file which is built dynamically).

This will allow you to regularly update your copy of the circuits development
repository by simply performing the following in the circuits working directory:

$ hg pull -u

NB: You do not need to reinstall if you have installed with setuptools via
the circuits repository and used setuptools to install in “develop” mode.

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Requirements and Dependencies

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	Getting Started

Requirements and Dependencies

	circuits has no required dependencies beyond the Python Standard Library [http://docs.python.org/library/].

	Python: >= 2.6

Other Optional Dependencies

These dependencies are not strictly required and only add additional
features such as the option for a routes dispatcher for circuits.web
and rendering of component graphs for your application.

	pydot [http://pypi.python.org/pypi/pydot/]
– For rendering component graphs of an application.

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Tutorial

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

Tutorial

Overview

Welcome to the circuits tutorial. This 5-minute tutorial will guide you
through the basic concepts of circuits. The goal is to introduce
new concepts incrementally with walk-through examples that you can try out!
By the time you’ve finished, you should have a good basic understanding
of circuits, how it feels and where to go from there.

The Component

First up, let’s show how you can use the Component and run it in a very
simple application.

	1
2
3
4
5

	#!/usr/bin/env python

from circuits import Component

Component().run()

Download 001.py

Okay so that’s pretty boring as it doesn’t do very much! But that’s okay...
Read on!

Let’s try to create our own custom Component called MyComponent.

	1
2
3
4
5
6
7
8

	#!/usr/bin/env python

from circuits import Component

class MyComponent(Component):
 """My Component"""

MyComponent().run()

Download 002.py

Okay, so this still isn’t very useful! But at least we can create
components with the behavior we want.

Let’s move on to something more interesting...

Event Handlers

Let’s now extend our little example to say “Hello World!” when its started.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	#!/usr/bin/env python

from circuits import Component

class MyComponent(Component):

 def started(self, *args):
 print("Hello World!")

MyComponent().run()

Download 003.py

Here we’ve created a simple Event Handler that listens for events on
the “started” channel. Methods defined in a Component are converted into
Event Handlers.

Running this we get:

Hello World!

Alright! We have something slightly more useful! Whoohoo it says hello!

Note

Press ^C (CTRL + C) to exit.

Registering Components

So now that we’ve learned how to use a Component, create a custom Component
and create simple Event Handlers, let’s try something a bit more complex
by creating a complex component made up of two simpler ones.

Let’s create two components:

	Bob

	Fred

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	#!/usr/bin/env python

from circuits import Component

class Bob(Component):

 def started(self, *args):
 print("Hello I'm Bob!")

class Fred(Component):

 def started(self, *args):
 print("Hello I'm Fred!")

(Bob() + Fred()).run()

Download 004.py

Notice the way we register the two components Bob and Fred together
? Don’t worry if this doesn’t make sense right now. Think of it as putting
two components together and plugging them into a circuits board.

Running this example produces the following result:

Hello I'm Bob!
Hello I'm Fred!

Cool! We have two components that each do something and print a simple
message on the screen!

Complex Components

Now, what if we wanted to create a Complex Component ? Let’s say we wanted
to create a new Component made up of two other smaller components ?

We can do this by simply registering components to a Complex Component
during initialization.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	#!/usr/bin/env python

from circuits import Component
from circuits.tools import graph

class Pound(Component):

 def __init__(self):
 super(Pound, self).__init__()

 self.bob = Bob().register(self)
 self.fred = Fred().register(self)

 def started(self, *args):
 print(graph(self.root))

class Bob(Component):

 def started(self, *args):
 print("Hello I'm Bob!")

class Fred(Component):

 def started(self, *args):
 print("Hello I'm Fred!")

Pound().run()

Download 005.py

So now Pound is a Component that consists of two other components
registered to it: Bob and Fred

The output of this is identical to the previous:

* <Pound/* 3391:MainThread (queued=0, channels=1, handlers=3) [R]>
 * <Bob/* 3391:MainThread (queued=0, channels=1, handlers=1) [S]>
 * <Fred/* 3391:MainThread (queued=0, channels=1, handlers=1) [S]>
Hello I'm Bob!
Hello I'm Fred!

The only difference is that Bob and Fred are now part of a more
Complex Component called Pound. This can be illustrated by the
following diagram:

[image: digraph G { "Pound-1344" -> "Bob-9b0c"; "Pound-1344" -> "Fred-e98a"; }]

Note

The extra lines in the above output are an ASCII representation of the
above graph (produced by pydot + graphviz).

Cool :-)

Component Inheritence

Since circuits is a framework written for the Python Programming
Language [http://www.python.org/] it naturally inherits properties of Object Orientated
Programming (OOP) – such as inheritence.

So let’s take our Bob and Fred components and create a Base
Component called Dog and modify our two dogs (Bob and Fred) to
subclass this.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	#!/usr/bin/env python

from circuits import Component, Event

class Woof(Event):
 """Woof Event"""

class Pound(Component):

 def __init__(self):
 super(Pound, self).__init__()

 self.bob = Bob().register(self)
 self.fred = Fred().register(self)

 def started(self, *args):
 self.fire(Woof())

class Dog(Component):

 def woof(self):
 print("Woof! I'm %s!" % self.name)

class Bob(Dog):
 """Bob"""

class Fred(Dog):
 """Fred"""

Pound().run()

Download 006.py

Now let’s try to run this and see what happens:

Woof! I'm Bob!
Woof! I'm Fred!

So both dogs barked~ Hmmm

Component Channels

What if we only want one of our dogs to bark ? How do we do this without
causing the other one to bark as well ?

Easy! Use a separate channel like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	#!/usr/bin/env python

from circuits import Component, Event

class Woof(Event):
 """Woof Event"""

class Pound(Component):

 def __init__(self):
 super(Pound, self).__init__()

 self.bob = Bob().register(self)
 self.fred = Fred().register(self)

 def started(self, *args):
 self.fire(Woof(), self.bob)

class Dog(Component):

 def woof(self):
 print("Woof! I'm %s!" % self.name)

class Bob(Dog):
 """Bob"""

 channel = "bob"

class Fred(Dog):
 """Fred"""

 channel = "fred"

Pound().run()

Download 007.py

Note

Events can be fired with either the .fire(...) or .fireEvent(...)
method.

If you run this, you’ll get:

Woof! I'm Bob!

Event Objects

So far in our tutorial we have been defining an Event Handler for a builtin
Event called Started (which incidentally gets fired on a channel called
“started”). What if we wanted to define our own Event Handlers and our own
Events ? You’ve already seen how easy it is to create a new Event Handler
by simply defining a normal Python method on a Component.

Defining your own Events helps with documentation and testing and makes
things a little easier.

Example:

class MyEvent(Event):
 """MyEvent"""

So here’s our example where we’ll define a new Event called Bark
and make our Dog fire a Bark event when our application starts up.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	#!/usr/bin/env python

from circuits import Component, Event

class Bark(Event):
 """Bark Event"""

class Pound(Component):

 def __init__(self):
 super(Pound, self).__init__()

 self.bob = Bob().register(self)
 self.fred = Fred().register(self)

class Dog(Component):

 def started(self, *args):
 self.fire(Bark())

 def bark(self):
 print("Woof! I'm %s!" % self.name)

class Bob(Dog):
 """Bob"""

 channel = "bob"

class Fred(Dog):
 """Fred"""

 channel = "fred"

Pound().run()

Download 008.py

If you run this, you’ll get:

Woof! I'm Bob!
Woof! I'm Fred!

The Debugger

Lastly...

Asynchronous programming has many advantages but can be a little harder to
write and follow. A silently caught exception in an Event Handler, or an Event
that never gets fired, or any number of other weird things can cause your
application to fail and leave you scratching your head.

Fortunately circuits comes with a Debugger Component to help you keep
track of what’s going on in your application, and allows you to tell what
your application is doing.

Let’s say that we defined out bark Event Handler in our Dog
Component as follows:

def bark(self):
 print("Woof! I'm %s!" % name)

Now clearly there is no such variable as name in the local scope.

For reference here’s the entire example...

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	#!/usr/bin/env python

from circuits import Component, Event

class Bark(Event):
 """Bark Event"""

class Pound(Component):

 def __init__(self):
 super(Pound, self).__init__()

 self.bob = Bob().register(self)
 self.fred = Fred().register(self)

class Dog(Component):

 def started(self, *args):
 self.fire(Bark())

 def bark(self):
 print("Woof! I'm %s!" % name)

class Bob(Dog):
 """Bob"""

 channel = "bob"

class Fred(Dog):
 """Fred"""

 channel = "fred"

Pound().run()

Download 009.py

If you run this, you’ll get:

That’s right! You get nothing! Why ? Well in circuits any error or
exception that occurs in a running application is automatically caught and
dealt with in a way that lets your application “keep on going”. Crashing is
unwanted behavior in a system so we expect to be able to recover from
horrible situations.

SO what do we do ? Well that’s easy. circuits come with a Debugger
that lets you log all events as well as all errors so you can quickly and
easily discover which Event is causing a problem and which Event Handler to
look at.

If you change Line 34 of our example...

From:

Pound().run()

from circuits import Debugger

(Pound() + Debugger()).run()

Then run this, you’ll get the following:

<Registered[bob:registered] [<Bob/bob 3191:MainThread (queued=0, channels=2, handlers=2) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>] {}>
<Registered[fred:registered] [<Fred/fred 3191:MainThread (queued=0, channels=2, handlers=2) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>] {}>
<Registered[*:registered] [<Debugger/* 3191:MainThread (queued=0, channels=1, handlers=1) [S]>, <Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>] {}>
<Started[*:started] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [R]>, None] {}>
<Bark[bob:bark] [] {}>
<Bark[fred:bark] [] {}>
<Error[*:exception] [<type 'exceptions.NameError'>, NameError("global name 'name' is not defined",), [' File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __handleEvent\n retval = handler(*eargs, **ekwargs)\n', ' File "source/tutorial/009.py", line 22, in bark\n print("Woof! I\'m %s!" % name)\n'], <bound method ?.bark of <Bob/bob 3191:MainThread (queued=0, channels=2, handlers=2) [S]>>] {}>
ERROR <listener on ('bark',) {target='bob', priority=0.0}> (<type 'exceptions.NameError'>): global name 'name' is not defined
 File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __handleEvent
 retval = handler(*eargs, **ekwargs)
 File "source/tutorial/009.py", line 22, in bark
 print("Woof! I'm %s!" % name)

<Error[*:exception] [<type 'exceptions.NameError'>, NameError("global name 'name' is not defined",), [' File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __handleEvent\n retval = handler(*eargs, **ekwargs)\n', ' File "source/tutorial/009.py", line 22, in bark\n print("Woof! I\'m %s!" % name)\n'], <bound method ?.bark of <Fred/fred 3191:MainThread (queued=0, channels=2, handlers=2) [S]>>] {}>
ERROR <listener on ('bark',) {target='fred', priority=0.0}> (<type 'exceptions.NameError'>): global name 'name' is not defined
 File "/home/prologic/work/circuits/circuits/core/manager.py", line 459, in __handleEvent
 retval = handler(*eargs, **ekwargs)
 File "source/tutorial/009.py", line 22, in bark
 print("Woof! I'm %s!" % name)

^C<Signal[*:signal] [2, <frame object at 0x808e8ec>] {}>
<Stopped[*:stopped] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [S]>] {}>
<Stopped[*:stopped] [<Pound/* 3191:MainThread (queued=0, channels=5, handlers=5) [S]>] {}>

You’ll notice whereas there was no output before there is now a pretty
detailed output with the Debugger added to the application. Looking
through the output, we find that the application does indeed start
correctly, but when we fire our Bark Event it coughs up two exceptions,
one for each of our dogs (Bob and Fred).

From the error we can tell where the error is and roughly where to look in
the code.

Note

You’ll notice many other events that are displayed in the above output.
These are all default events that circuits has builtin which your
application can respond to. Each builtin Event has a special meaning
with relation to the state of the application at that point.

See: circuits.core.events for detailed documentation regarding
these events.

The correct code for the bark Event Handler should be:

def bark(self):
 print("Woof! I'm %s!" % self.name)

Running again with our correction results in the expected output:

Woof! I'm Bob!
Woof! I'm Fred!

That’s it folks!

Hopefully this gives you a feel of what circuits is all about and a easy
tutorial on some of the basic concepts. As you’re no doubt itching to get
started on your next circuits project, here’s some recommended reading:

	Frequently Asked Questions

	HowTos

	API Reference

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 The circuits Framework

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

The circuits Framework

	Components

	Events
	Basic usage

	Events as result collectors

	Advanced usage

	Handlers
	Explicit handler definition

	Automatic handler definition

	Values

	Debugging

	Tools

	Ticks

	Futures

	Manager

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Components

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Components

The architectural concept of circuits is to encapsulate system
functionality into discrete manageable and reusable units, called Components,
that interact by sending and handling events that flow throughout the system.

Technically, a circuits Component is a Python class that inherits
(directly or indirectly) from
BaseComponent.

Components can be sub-classed like any other normal Python class, however
components can also be composed of other components and it is natural
to do so. These are called Complex Components. An example of a Complex
Component within the circuits library is the
circuits.web.servers.Server Component which is comprised of:

	circuits.net.sockets.TCPServer

	circuits.web.servers.BaseServer

	circuits.web.http.HTTP

	circuits.web.dispatchers.dispatcher.Dispatcher

Note that there is no class or other technical means to mark a component
as a complex component. Rather, all component instances in a circuits
based application belong to some component tree (there may be several),
with Complex Components being a subtree within that structure.

A Component is attached to the tree by registering with the parent and
detached by un-registering itself (methods
register() and
unregister() of
BaseComponent).

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Events

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Events

Basic usage

Events are objects that are fired by the circuits framework implicitly
(like the Started event used in the tutorial)
or explicitly by components while handling some other event. Once fired,
events are dispatched to the components that are interested in these events,
i.e. that have registered themselves as handlers for these events.

Events are usually fired on one or more channels, allowing components
to gather in “interest groups”. This is especially useful if you want to
reuse basic components such as a TCP server. A TCP server component
fires a Read event for every package of data that it receives. If we
hadn’t the channels, it would be very difficult to separate the data from
two different TCP connections. But using the channels, we can put one TCP
server and all components interested in its events on one channel, and
another TCP server and the components interested in this other TCP server’s
events on another channel. Components are associated with a channel by
setting their channel attribute (see API description for
Component).

Besides having a name, events carry additional arbitrary information.
This information is passed as arguments or keyword arguments to the
constructor. It is then delivered to the handler function that must have
exactly the same number of arguments and keyword arguments. Of course,
as is usual in Python, you can also pass additional information by setting
attributes of the event object, though this usage pattern is discouraged
for events.

Events as result collectors

Apart from delivering information to handlers, event objects may also collect
information. If a handler returns something that is not None, it is
stored in the event’s value attribute. If a second (or any subsequent)
handler invocation also returns a value, the values are stored as a list.
Note that the value attribute is of type Value and you
must access its property value to access the data stored
(collected_information = event.value.value).

The collected information can be accessed by handlers in order to find out
about any return values from the previously invoked handlers. More useful
though, is the possibility to access the information after all handlers
have been invoked. After all handlers have run successfully (i.e. no
handler has thrown an error) circuits may generate an event that indicates
the successful handling. This event has the name of the event
just handled with “Success” appended. So if the event is called Identify
then the success event is called IdentifySuccess. Success events aren’t
delivered by default. If you want successful handling to be indicated
for an event, you have to set the optional attribute success of this
event to True.

The handler for a success event must be defined with two arguments. When
invoked, the first argument is the event just having been handled
successfully and the second argument is (as a convenience) what has been
collected in event.value.value (note that the first argument may not
be called event, for an explanation of this restriction as well as
for an explanation why the method is called identify_success
see the section on handlers).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	#!/usr/bin/env python

from circuits import Component, Event
from circuits.core.debugger import Debugger

class Identify(Event):
 """Identify Event"""
 success = True

class Pound(Component):

 def __init__(self):
 super(Pound, self).__init__()

 Debugger().register(self)
 Bob().register(self)
 Fred().register(self)

 def started(self, *args):
 self.fire(Identify())

 def identify_success(self, evt, result):
 if not isinstance(result, list):
 result = [result]
 print "In pound:"
 for name in result:
 print name

class Dog(Component):

 def identify(self):
 return self.__class__.__name__

class Bob(Dog):
 """Bob"""

class Fred(Dog):
 """Fred"""

Pound().run()

Download handler_returns.py

Advanced usage

Sometimes it may be necessary to take some action when all state changes
triggered by an event are in effect. In this case it is not sufficient
to wait for the completion of all handlers for this particular event.
Rather, we also have to wait until all events that have been fired by
those handlers have been processed (and again wait for the events fired by
those events’ handlers, and so on). To support this scenario, circuits
can fire a Complete event. The usage is similar to the previously
described success event. Details can be found in the API description of
circuits.core.events.Event.

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Handlers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Handlers

Explicit handler definition

Handlers are methods of components that are invoked when a matching
event is dispatched. The question arises how methods are made known
as handlers to the circuits framework.

The ability to define methods as handlers is already provided for in
Component‘s base class, the
BaseComponent. Any class that
inherits from BaseComponent can advertise a method as a handler
using the handler annotation.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	#!/usr/bin/env python

from circuits.core.debugger import Debugger
from circuits.core.components import BaseComponent
from circuits.core.handlers import handler

class MyComponent(BaseComponent):

 def __init__(self):
 super(MyComponent, self).__init__()

 Debugger().register(self)

 @handler("started", channel="*")
 def _on_started(self, component):
 print "Start event detected"

MyComponent().run()

Download handler_annotation.py

The handler annotation in line 14 makes the method _on_started known
to circuits as a handler for the event Started. Event names used to define
handlers are the uncameled class names of the event. An event with a class
name MySpecialEvent becomes “my_special_event” when referred to
in a handler definition. The name of the method that is annotated with
@handler is of no significance. You can choose it to your liking.
Throughout the circuits source code, handler methods usually follow
the pattern “_on_some_event”. This makes it obvious to the reader
that the method is not part of the class’s public API (leading underscore as
per Python convention) and that it is invoked for events of type
SomeEvent.

The optional keyword argument “channel” can be used to attach the
handler to a different channel than the component’s channel (as specified
by the component’s channel attribute).

Handler methods must be declared with arguments and keyword arguments that
match the arguments passed to the event upon its creation. Looking at the
API for Started you’ll find that the
component that has been started is passed as an argument to its constructor.
Therefore, our handler method must declare one argument (line 15).

The handler annotation accepts some more keyword arguments that
influence the behavior of the handler and its invocation. Details can
be found in the API description of handler().

Automatic handler definition

To easy the implementation of components with (mostly) standard
handlers, components can be derived from
Component. For such classes a
@handler("method_name") annotation is applied automatically
to all method, unless the method’s name starts with an underscore
or the method has already an explicit @handler annotation.

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Values

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Values

...

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Debugging

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Debugging

...

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Tools

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Tools

...

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Ticks

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Ticks

...

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Futures

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Futures

...

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Manager

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits Framework

Manager

...

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 The circuits.web Framework

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

The circuits.web Framework

	Introduction

	Getting Started

	The Basics

	How To Guide(s)

	Application Deployment

	Controllers

	Dispatchers

	Tools

 Copyright 2004-2012, James Mills.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	2.1.0

 	2.0.1

 	1.6

 Introduction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	circuits 2.0.1 documentation

 	The circuits.web Framework

Introduction

circuits.web is a set of components for building high performance HTTP/1.1
and WSGI/1.0 compliant web applications. These components make it easy to
rapidly develop rich, scalable web applications with minimal effort.

circuits